期刊文献+

非氧化性酸处理活性炭催化分解碘化氢的实验研究 被引量:2

INFLUENCE OF NON-OXIDATIVE ACID TREATMENT ON ACTIVATED CARBON FOR HYDROGEN IODIDE CATALYTIC DECOMPOSITION IN THE SULFUR-IODINE CYCLE FOR HYDROGEN PRODUCTION
原文传递
导出
摘要 将煤质活性炭应用于碘化氢(HI)催化分解,分别采用HCL和HF对其进行非氧化性酸处理改性,考察其HI分解活性,研究活性炭的物化性质与其催化活性关系。活性炭原样已是良好的HI分解催化剂,HI分解率随温度的上升而提高。经过非氧化性酸处理改性后,活性炭的催化活性明显提高。非氧化性酸处理可去除活性炭中绝大部分的碱金属、Al2O3及Si O2等杂质。活性炭表面含氧官能团含量变化不明显。HI分解率随碳含量的上升而提高。活性炭中微晶平面缺陷位和边缘碳原子可能是活性炭催化分解HI的活性位。 Coal based activated carbons with the treatment of non-oxidative acids were prepared for hydrogen iodide (HI) decomposition in the sulfur-iodine cycle for hydrogen production. The acid treated activated carbons and the original sample showed considerably improve in HI decomposition comparing with the blank yield. The activated carbon with the treatment of hydrochloride and hydrofluoric acids had the best catalytic activity. Most of the alkali metal, aluminum oxide, silica, and other inorganic matters were removed by the non-oxidative acids. The oxygen-containing groups changed little after the treatments of non-oxidative acids. HI conversion increased with carbon content of activated carbon. Activated carbon decomposing HI may be due to structural defects and edge sites.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第3期690-695,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51006088)
关键词 制氢 硫碘循环 碘化氢 催化 活性炭 thermochemical hydrogen production sulfur-iodine cycle hydrogen iodide catalyst activated carbon
  • 相关文献

参考文献15

  • 1Funk J E, Reinstrom R M. Energy requirements in the production of hydrogen from water[J]. I&EC Process Design and Development, 1966, 5(3): 336--342.
  • 2Oosawa Y, Kumagai T, Mizuta S, et al. Kinetics of the catalytic decomposition of hydrogen iodide in the magnesium-iodine thermochemical cycle [J]. Bulletin of the Chemical Society of Japan, 1981, 54 (3) : 742--- 748.
  • 3Okeefe D R, Norman J H, Williamson D G. Catalysis research in thermochemical water splitting processes [J ]. Catalysis Reviews-Science and Engineering, 1980, 22 (3) : 325--369.
  • 4Oosawa . The decomposition of hydrogen iodide and separation of the products by the combination of an adsorbent with catalytic activity and a temperature-swing method [J]. Bulletin of the Chemical Society of Japan, 1981, 54(10) : 2908--2912.
  • 5Wang Zhihua, Chen Yun. Zhou Chao, et al. Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production [J]. International Journal of Hydrogen Energy, 2011, 36 (1) : 216---223.
  • 6Ginosa D M, Petkovic L M, Butch K C. Commercial activated carbon for the catalytic production of hydrogen via the sulfur-Iodine thermoehemical water splitting cycle [J]. International Journal of Hydrogen Energy, 2011, 36 (15) : 8908--8914.
  • 7Petkovic L M, Ginosar D M, Rollins H W, et al. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle [J ]. International Journal of Hydrogen Energy, 2009, 34 (9) : 4057--4064.
  • 8Favuzz P, Felici C, Nardi L, et al. Kinetics of hydrogen iodide decomposition over activated carbon catalysts in pellets [J]. Applied Catalysis B-Environmental, 2011, 105(1-2) : 30---40.
  • 9Pun B R, Walker Jr PL (editor). Chemistry and physics of carbon, surface complexes on carbon [M]. New York: Marcell Dekker, 1970, 249--282.
  • 10Nevskaia D M, Santianes A, Mufioz V, et al. Interaction of aqueous solutions ff phenol withcommercial activated carbons:An adsorption and kinetic study[J]. Carbon, 1999, 37(7) : 1065--1074.

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部