期刊文献+

一种基于方差标记的形态学红外小目标检测算法 被引量:7

A Morphology Algorithm for IR Dim Target Detection Based on Variance-Mark
下载PDF
导出
摘要 形态学算法在红外小目标检测上具有良好的性能,先对该算法的处理过程进行了分析,结合实际拍摄的红外小目标图像研究发现,算法在处理过程中存在很多不必要的计算,因此从提高算法的实时性出发,提出了一种基于方差标记的形态学方法.该方法首先计算图像每个像素的局部方差,然后由方差根据阈值判断条件对图像进行标记,标记完后再通过形态学算法对标记的部分进行Top-hat运算.理论分析和仿真实验表明,该方法能够极大的提高形态学的检测效率,而且对算法的检测性能有一定的提高. The morphology algorithm has proved to have good performance in IR small target detection,an analysis for the process of the algorithm was done firstly,and combined with the real IR small target images,the factor that much unnecessary calculation in the process of the algorithm was found. So,aimed at promoting the real-time demand,a morphology method that based on variance-mark was proposed. The local variance of every pixel in the image was firstly calculated according to this method,and then the image was marked by the variance and the threshold qualification. After marking the image,the Top-hat operation was carried on the marked pixels by morphology algorithm. The theory analysis and the simulation demonstrated that the detection efficiency was promoted remarkably through the proposed algorithm; furthermore,the detection performance of the algorithm was also improved.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第2期338-343,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61271376 No.61307025) 安徽省自然科学基金(No.1208085UF114 No.1308085QF122)
关键词 红外小目标 形态学 方差标记 检测 IR small target morphology variance-mark detection
  • 相关文献

参考文献7

二级参考文献93

共引文献96

同被引文献72

  • 1梅林,吴立德,王裕文.脉冲加热红外无损检测中的图像处理[J].红外与毫米波学报,2002,21(5):372-376. 被引量:16
  • 2姚迅,李德华,黄飞,石永辉.基于视觉注意机制的红外图像小目标检测方法[J].武汉大学学报(工学版),2006,39(6):108-112. 被引量:4
  • 3Liu L,Huang Z.Infrared dim target detection technology based on background estimate[J].Infrared Physics & Technology,2014,62:59-64.
  • 4Tom V T,Peli T,Leung M,et al.Morphology-based algorithm for point target detection in infrared backgrounds[C]//Optical Engineering and Photonics in Aerospace Sensing.Bellingham,WA:International Society for Optics and Photonics,1993:2-11.
  • 5Bai X,Zhou F.Analysis of new top-hat transformation and the application for infrared dim small target detection[J].Pattern Recognition,2010,43(6):2145-2156.
  • 6Chen C Philip L,Li H,et al.A local contrast method for small infrared target detection[J].IEEE Transactionson Geoscience and Remote Sensing,2014,52(1):574-581.
  • 7Yang C,Ma J,Zhang M,et al.Multiscale facet model for infrared small target detection[J].Infrared Physics & Technology,2014,67:202-209.
  • 8Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 9Harel J,Koch C,Perona P.Graph-based visual saliency[C]//Proceedings of the 20th Annual Conference on Neural Information Processing Systems,NIPS 2006.New York:Neural Information Processing System Foundation,2007:545-552.
  • 10Hou X D,Zhang L.Saliency detection:A spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007).Washington,D.C.:IEEE Computer Society Press,2007:1-8.

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部