期刊文献+

基于SVD矩阵分解技术和RkNN算法的协同过滤推荐算法 被引量:1

Research on Collaborative Filtering Recommendation Algorithm Based on SVD Matrix Decomposition Technique and RkNN Algorithm
下载PDF
导出
摘要 针对现有协同过滤算法具有的可扩展性较低、数据稀疏和计算量较大缺点,提出一种基于SVD矩阵分解技术和RkNN算法的协同过滤推荐算法.本算法经SVD矩阵简化处理和kNN和RkNN的协作过滤,增强了用户的影响集,实现了测试集的未知预测评分功能.经仿真实验表明,稀疏性、可扩展性和计算量都得到有效改善,系统预测评分与用户实际评分接近,为用户提供了良好的使用体验.该算法获得了更好的预测性能,同时具有良好的可扩展性. The RBF neural network has the disadvantages of slow convergence speed and leak global searching ability, this paper presents a RBF neural network based on genetic algorithm, improves the prediction accuracy of RBF neural network prediction model and realizes nonlinear time sequence after adapting genetic operator parameters optimization. The simulation experiment results show that the prediction of RBF network prediction model is very suitable for the genetic algorithm based on nonlinear time series. It is feasible, accurate and effective.
作者 刘洋
出处 《湖南工程学院学报(自然科学版)》 2015年第1期44-47,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 SVD影响集 协作过滤 推荐算法 RkNN影响集 time series forecasting model RBF neural network genetic algorithm
  • 相关文献

参考文献6

二级参考文献59

  • 1Resnick P,Iacovou N,Sushak M.GroupLens:An open architecture for collaborative filtering of netnews[C]//Proceedings of CSCW 1994, ACM SIG Computer Supported Cooperative Work,1994.
  • 2Sarwar B,KalTpis G,Konstan Let aLItem-based collaborative filtering recommendation algorithras[C]//Proc of the 10th International WorldWideWeb Conference,2001:285-295.
  • 3Mobasher B,Burke R,Sandvig J J.Model-based collaborative filtering as a defense against profile injection attacks[C]//Proceedings of the 21st National Conference on Artificial Intelligence(AAAI'06), 2006.
  • 4Lain S,Reidl J.ShiUing recommender systems for fun and profit[C]// Proceedings of the 13th International WWW Conference,New York, 2002.
  • 5Sawrar B M, Karypis G,Konstan J A.Application of dimensionality reduction in recommender systems-A case study[C]//ACM WebKDD 2000 Web Mining for E -Commerce Workshop, Boston, Massachusetts,July 16-20,2006.
  • 6Mobasher B,Burke R,Bhaumik R,et a.Effective attack models for shilling item-based collaborative filtering systems[C]//Proceedings of the 2005 Web KDD Workshop,Held in conjuction with ACM SIGKDD 2005, Chicago, Illinois, 2005.
  • 7[1]Pawlak Z.Rough Sets[J].International Journal of Computer Sciences,1982; 11: 341~356
  • 8[2]Krzysztof J Cios,Witold Pedrycz,Roman W Swiniarski. Data Mining Methods for Knowledge Discovery[M].Kluwer Academic Publishers,1998
  • 9[3]Azar Y,Fiat A,Karlin A et al.Spectral Analysis for Data Mining[C].In:Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,2001:619~626
  • 10[4]Christos H Papadimitriou, Prabhakar Raghavan, Hisao Tamaki et al.Latent Semantic Indexing:A Probabilistic Analysis[C].In:Proceedings of ACM Symposium on Principles of Database Systems, 1997

共引文献19

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部