期刊文献+

一类具周期源的退化抛物方程解的渐近性态

The Properties of a Degenerate Parabolic Equation with Periodic Source Term
下载PDF
导出
摘要 讨论具周期源的退化抛物方程ut=Δum+θupsint的Cauchy问题解的几何性质以及解的传播性质,利用先验估计和比较原理,证明了在任意固定的时刻,解的扰动传播是有限的,并且得到了显示的表达式;证明了曲面Φ=[u(x,t)]mδ/q是随着时间t的连续变化而漂浮于空间RN+1中的完备黎曼流形,它与空间RN相切于低维流形Hu(t). In this paper, the geometric and propagating properties of solution of the Cauchy problem for a degenerate parabolic equation ut=△um+θupsint sint with periodic source term were discussed. The objective is to show that : 1 ) the disturbance propagation of solution is limited ; 2) with continuous variation of time t, the surface φ=[u(x,t)]mδ/q is a complete Riemannian manifold floating in space RN N+1 and is going to be tan- gent to the space RN at the boundary of the set of OHu (t) .
机构地区 集美大学理学院
出处 《集美大学学报(自然科学版)》 CAS 2015年第2期154-160,共7页 Journal of Jimei University:Natural Science
基金 福建省自然科学基金资助项目(2012J01013)
关键词 退化抛物方程 周期源 黎曼流形 degenerate parabolic equation periodic source term Riemannian manifold
  • 相关文献

参考文献5

二级参考文献50

  • 1简怀玉,博士学位论文,1994年
  • 2Peletier, L. A., The porous medium equation, Application of Analysis in the Physical Sciences, Pitman, London, 1981, 229-241.
  • 3Aronson, D. G., Regularity properties of flows through porous media, SIAM J. Appl. Math., 17(2), 1969, 461-466.
  • 4Aronson, D. G., Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math., 19(2), 1970, 299-306.
  • 5Aronson, D. G., Regularity properties of flows through porous media: the interface, Arch. Rat. Mech. Anal., 37(1), 1970, 1-9.
  • 6Aronson, D. G. and Vazquez, J. L., Eventual C^∞-regularity and concavity for flows in one-dimensional porous medium, Arch. Rat. Mech. Anal., 99(4), 1987, 329-347.
  • 7Caffarelli, L. A. and Friedman, A., Regularity of the free boundary of a gas flow in n-dimensional porous medium, Indiana Univ. Math. J., 29, 1980, 361-391.
  • 8Aronson, D. G. and Benilan, P., Regularite des solutions de l'equation des milieus poreux dans R^N, C. R. Math. Acad. Sc. Paris, 288, 1979, 103-104.
  • 9Caffarelli, L. A., Vazquez, J. L. and Wolanski, N. I., Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J., 36(2), 1987, 373-401.
  • 10Caffarelli, L. A. and Wonlanski, N. I., C^1,α regularity of the free boundary for the N-dimensional porous media equation, Comm. Pure Appl. Math., 43, 1990, 885-901.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部