摘要
讨论具周期源的退化抛物方程ut=Δum+θupsint的Cauchy问题解的几何性质以及解的传播性质,利用先验估计和比较原理,证明了在任意固定的时刻,解的扰动传播是有限的,并且得到了显示的表达式;证明了曲面Φ=[u(x,t)]mδ/q是随着时间t的连续变化而漂浮于空间RN+1中的完备黎曼流形,它与空间RN相切于低维流形Hu(t).
In this paper, the geometric and propagating properties of solution of the Cauchy problem for a degenerate parabolic equation ut=△um+θupsint sint with periodic source term were discussed. The objective is to show that : 1 ) the disturbance propagation of solution is limited ; 2) with continuous variation of time t, the surface φ=[u(x,t)]mδ/q is a complete Riemannian manifold floating in space RN N+1 and is going to be tan- gent to the space RN at the boundary of the set of OHu (t) .
出处
《集美大学学报(自然科学版)》
CAS
2015年第2期154-160,共7页
Journal of Jimei University:Natural Science
基金
福建省自然科学基金资助项目(2012J01013)
关键词
退化抛物方程
周期源
黎曼流形
degenerate parabolic equation
periodic source term
Riemannian manifold