期刊文献+

CAUCHY PROBLEM FOR LINEARIZED NON-CUTOFF BOLTZMANN EQUATION WITH DISTRIBUTION INITIAL DATUM 被引量:1

CAUCHY PROBLEM FOR LINEARIZED NON-CUTOFF BOLTZMANN EQUATION WITH DISTRIBUTION INITIAL DATUM
下载PDF
导出
摘要 In this article, we study the Cauchy problem for the linearized spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. By using the spectral decomposition, we solve the Cauchy problem with initial datum in the sense of distribution, which contains the dual space of a Gelfand-Shilov class. We also prove that this solution belongs to the Gelfand-Shilov space for any positive time. In this article, we study the Cauchy problem for the linearized spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. By using the spectral decomposition, we solve the Cauchy problem with initial datum in the sense of distribution, which contains the dual space of a Gelfand-Shilov class. We also prove that this solution belongs to the Gelfand-Shilov space for any positive time.
作者 李浩光
出处 《Acta Mathematica Scientia》 SCIE CSCD 2015年第2期459-476,共18页 数学物理学报(B辑英文版)
基金 supported by the Fundamental Research Funds for the Central Unversities and National Science Foundation of China(11171261and 11422106)
关键词 Boltzmann equation spectral decomposition Gelfand-Shilov class distribution initial datum Boltzmann equation spectral decomposition Gelfand-Shilov class distribution initial datum
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部