摘要
OBJECTIVE: Inactivation of the Janus kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3) signaling axis plays a crucial role in determining the fate of neural stem cells(NSCs).Qingnaoyizhi decoction(QNYZD) has been used for the treatment of vascular dementia and has shown to improve synaptic remodeling. The aim of this study was to evaluate the effect of cerebrospinal fluid(CSF) containing QNYZD(CSF-QNYZD) on the differentiation of cultured NSCs and the involvement of the JAK2/STAT3 pathway.METHODS: The protein expression levels of glial fibrillary acidic protein(GFAP), tubulin, drosophila mothers against decapentaplegic protein(SMAD-1), STAT3, and phosphorylated-STAT3 were detected by western immunoblot analysis in the groups: control, CSF, JAK/STAT inhibitor(AG490),CSF-QNYZD, and CSF-XDZ(CSF-Xidezhen). The differentiation of NSCs was determined by immunofluorescence staining. The proliferation of NSCs was measured using the Cell Counting Kit-8 proliferation assay.RESULTS: Compared with the control group,CSF-QNYZD and AG490 significantly increased the number and expression of tubulin-positive cells, reduced the number and expression of GFAP-positive cells, and down-regulated the expression of p-STAT3. However, CSF-QNYZD also decreased the expression of SMAD-1 and STAT3.CONCLUSION: Enhanced neuronal differentiation may be associated with the down-regulation of glial differentiation instead of promoting proliferationin treated NSCs. Furthermore, QNYZD may play a direct role in suppressing the formation of GFAP-positive cells and enhancing neuronal differentiation by inhibiting JAK2/STAT3 activation. Overall, these results provide insights into the possible mechanism underlying QNYZD-mediated neurogenesis.
OBJECTIVE: Inactivation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling axis plays a crucial role in determining the fate of neural stem cells (NSCs). Qingnaoyizhi decoction (QNYZD) has been used for the treatment of vascular dementia and has shown to improve synaptic remodeling. The aim of this study was to evaluate the effect of cerebrospinal fluid (CSF) containing QNYZD (CSF-QNYZD) on the differentiation of cultured NSCs and the involvement of the JAK2/STAT3 pathway.METHODS: The protein expression levels of glial fi- brillary acidic protein (GFAP), tubulin, drosophila mothers against decapentaplegic protein (SMAD-1), STAT3, and phosphorylated-STAT3 were detected by western immunoblot analysis in the groups: control, CSF, JAK/STAT inhibitor (AG490), CSF-QNYZD, and CSF-XDZ (CSF-Xidezhen). The dif- ferentiation of NSCs was determined by immunofluorescence staining. The proliferation of NSCs was measured using the Cell Counting Kit-8 proliferation assay.RESULTS: Compared with the control group, CSF-QNYZD and AG490 significantly increased the number and expression of tubulin-positive cells, reduced the number and expression of GFAP-positive cells, and down-regulated the expression of p-STAT3. However, CSF-QNYZD also decreased the expression of SMAD-1 and STAT3.CONCLUSION: Enhanced neuronal differentiation may be associated with the down-regulation of glial differentiation instead of promoting proliferation in treated NSCs. Furthermore, QNYZD may play a direct role in suppressing the formation of GFAP-positive cells and enhancing neuronal differentiation by inhibiting JAK2/STAT3 activation. Overall, these results provide insights into the possible mechanism underlying QNYZD-mediated neurogenesis.
基金
Supported by 973 Project for Basic Research of Traditional Chinese Medicine(No.2010CB530405)
the National Natural Science Foundation of China(Effects and Mechanisms of Storax on NF-ΚB-Mediated Inflammatory Response During Cerebral Ischemia-Reperfusion Injure,No.81273815)
the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201082)
the China Postdoctoral Fund of Sciences(The Effect of Cerebrospinal Fluid Containing Yishenhuazhuo Decotion on the Self-Renewal and Differentiation of Neural Stem Cell,No.2012M520587)