期刊文献+

基于像素自适应分割背景建模的鬼影去除算法

A Ghost Removal Algorithm Based on Pixel-Based Adaptive Segmenter
下载PDF
导出
摘要 针对基于像素的自适应分割检测算法在建立背景模型时容易产生鬼影的问题,根据背影视觉提取算法中相邻像素点拥有相近像素值的空间分布特性,将待定的前景像素值与邻域像素值的差值通过加权比较其与自适应阈值的大小,来确定该像素点是前景像素点还是鬼影像素点。若为鬼影像素点则判定为背景像素点,并更新其背景模型。通过对前景像素点的二次判断,达到迅速去除鬼影的目的。实验结果表明,改进后的算法相比于原算法能更快速地去除鬼影。 It is probable that ghost would be produced when background model is established with pixel-based adaptive segmenter algorithm. According to the theory that adjacent pixel points have similar pixel values in spatial distribution in VIBE algorithm, the difference of foreground pixels was computed which are judged in the fi rst time and the neighborhood pixel. Then the difference and adaptive threshold value were compared through weight to determine whether the pixel is foreground pixel point or ghost which will be judged as background pixel. At last the background models would be updated. Through twice judgments of the foreground pixels, the ghost would be removed quickly. The experiment results show that the improved algorithm removes the ghost faster than the original method.
作者 魏伟 朱栋华
出处 《集成技术》 2015年第2期50-56,共7页 Journal of Integration Technology
关键词 鬼影去除 像素自适应分割 背景建模 运动目标检测 ghost removal pixel-based adaptive segmenter background model motion detection
  • 相关文献

参考文献1

二级参考文献11

  • 1Cucchiara R, Grana C, Piccardi M. et al. Detecting Moving Object, Ghosts, and Shadows in Video Streams [J]. IEEE Trans on Pattern Analysis and Machinc Intelligence, 2003. 25 (10) : 1337-1342.
  • 2Calderara S, Melli R, Prati A, et al. Reliable Background Suppression for Complex Scenes[C]//Proc of ACM Workshop on Video Surveillance and Sensor Networks, 2006:211- 214.
  • 3Yang Tao, Pan Quan, Li Stan Z, et al. Multiple Layer Based Background Maintenance in Complex Environment [C]// Proc of the 3rd Int'l Conf on Image and Graphics. 2004:112-115.
  • 4Cheung S C. Kamath C. Robust Background Subtraction with Foreground Validation for Urban Traffic Video[J]. EURASIP Journal on Applied Signal Processing, 2005,14 (1):1-11.
  • 5Ruiz del Solar J ,Shats A,Verschae R. Real-Time Tracking of Multiple Persons[C]//Proc of the 12th lnt'l Conf on Image Analysis and Processing, 2003.
  • 6Yang Tao,l.i Stan Z,Pan Quan,et al. Real-Time and Accurate Segmentation of Moving Objcets in Dynamic Scene[C]//Proc of the ACM 2nd Int'l Workshop on Video Surveillance & Sensor Networks,2004 : 136-143.
  • 7Stauffer C, Grimson W. Learning Patterns of Activity Using Real-Time Tracking[J]. IEEE Trans on Pattern Recognition and Machine Intelligence,2000,22(8):747-757.
  • 8Lee D S. Improved Adaptive Mixture Learning for Robust Video Background Modeling[C]//Proc of IAPR Workshop on Machine Vision for Applications,2002;443-446.
  • 9Bahadori S, Locchi L, Leone G R,et al. Real-Time People Localization and Tracking Through Fixed Stereo Vision[C]// Proc of the 18th Int 'l Conf on Innovations in Applied Artificial Intelligence, 2005:44 - 54.
  • 10Haritaoglu I, Harwood D, Davis L S. W4 : Real-Time Surveillance of People and Their Activities[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 809-830.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部