期刊文献+

丙烷预冷混合制冷剂液化流程用能优化方案 被引量:11

Optimization of energy consumption in liquefaction process of mixed refrigerant for propane pre-cooling
原文传递
导出
摘要 基本负荷型天然气液化装置中,丙烷预冷混合制冷剂液化流程(C3/MRC)应用最为广泛。对该流程的热力学分析显示,流程能耗的主要影响因素为混合制冷剂的压力及组成。为了降低天然气液化流程能耗,采用化工过程模拟软件HYSYS建立了丙烷预冷混合制冷剂液化流程(C3/MRC)模型。以LNG比功耗为目标函数,以高压制冷剂压力、低压制冷剂压力及制冷剂的组成为决策变量,对该液化流程进行优化,得到了各自的最优值及相应的流程参数。通过比较优化前后的流程参数值,发现在保证天然气液化率及LNG产品质量不变的情况下,优化后所需的制冷剂流量降低12.1%,LNG比功耗降低22.9%,提高了经济效益。 The C3/MRC process, i.e. liquefaction process of mixed refrigerant for propane pre-cooling, is most popular in basic-load natural gas liquefaction unit. Through thermodynamic analysis, it is found that pressure and composition of the mixed refrigerant are major factors influencing the energy consumption in the process. To reduce such energy consumption, HYSYS, the simulation software of chemical process, is used to establish the model of liquefaction process of mixed refrigerant for propane pre-cooling. Then, the process is optimized by taking LNG power consumption ratio as the objective function and the pressures of high pressure refrigerant and low-pressure refrigerant and the composition of the refrigerant as the decision variables, and optimal values of such parameters and corresponding process parameters are obtained. Through comparing the process parameters before and after the optimization, it is found that, given the constant natural gas liquefaction rate and LNG product quality, the required refrigerant flow is reduced by 12.1% and the LNG power consumption ratio is reduced by 22.9% after the optimization, indicating higher economic efficiency.
出处 《油气储运》 CAS 北大核心 2015年第3期267-270,274,共5页 Oil & Gas Storage and Transportation
关键词 天然气液化 丙烷预冷 HYSYS 能耗 优化 natural gas liquefaction propane pre-cooling HYSYS energy consumption optimization
  • 相关文献

参考文献11

二级参考文献30

  • 1石玉美,汪荣顺,顾安忠,鲁雪生.流程参数对丙烷预冷混合制冷剂循环损失的影响[J].上海交通大学学报,2004,38(10):1703-1706. 被引量:8
  • 2牛亚楠,冯良.化工过程模拟软件在液化天然气工程中的应用[J].上海煤气,2007(1):5-8. 被引量:2
  • 3BAILOUT N C, PRICE B C. Comparison of present day peakshaving liquefaction technologies [C]//8th Topical Conference on Natural Gas Utilization. Wash- ington DC, USA: American Chemical Society, 2008. 101-118.
  • 4MOKHATAB S, ECONOMIDES M J. Process selection is critical to onshore LNG economics[J].World Oil, 2006, 227(2): 95-96.
  • 5WILKES M A. Floating LNG liquefaction facilities using the optimized cascade process[C]//8th Topical Conference on Natural Gas Utilization. Washington DC, USA: American Chemical Society, 2008: 91.
  • 6SHI Y, GU A, WANG R, et al. Optimization analysis of peakshaving cycle to liquefy natural gas[C]// ICEC 20. Proceedings of the Twentieth International Cryogenic Engineering Conference. Oxon, England. Elsevier Science, Ltd., 2005: 741-744.
  • 7HOADLEY A F A, REMELJEJ C W. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes[J]. Energy, 2006, 31(12) : 1669- 1683.
  • 8YANGX D, GUAZ, XIW K, et al. Comparison study on small-scale LNG plants in China[C]//8th Topical Conference on Natural Gas Utilization. Washington, DC, USA: American Chemical Society, 2008: 128-136.
  • 9顾安中,鲁雪生.液化天然气技术手册[M].北京:机械工业出版社,2010.
  • 10Wolfgang Foerg, Wilfried Bach et al. A new LNG baseload and the manufacturing of the main heat exchangers.Twelfth international Conference & Exhibition on Liquefied Natural Gas, Perth, Australia, 1998-02-06

共引文献58

同被引文献99

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部