摘要
对目标函数为二次、约束条件为线性的二次规划问题,如果采用一定变换将其变为普通的线性规划,这既能保证结果的正确性,又可以大大地简化计算。讨论了二次0-1型整数规划的线性化求解:将二次0-1型整数规划问题等价转化为一次函数的线性0-1型整数规划问题,这样可以有效地简化求解。并给出了二次0-1型整数规划问题等价转化为线性0-1型整数规划问题的理论证明。实例分析进一步说明了该方法的适用性和可行性。
In view of a special type of quadratic programming problems that the objective function is quadratic and the constraints,If it is changed into ordinary linear programs by given transformation it not only can ensure the correctness of the results,but also can simplify the calculation greatly.In the paper,the linear solution of the 0-1integer quadratic programming is discussed:the 0-1integer quadratic programming is transformed equivalently into the 0-1integer programming problem,therefore it can simplify the solution very effectively.And the theoretical proof of the 0-1integer quadratic programming can transformed equivalently into the 0-1integer linear programming problem.The analysis of examples further illustrates that the method is feasible and applicable.
出处
《长江大学学报(自科版)(上旬)》
CAS
2015年第2期5-7,10,共4页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金
湖北省教育科学"十二五"规划项目(2012B426)