期刊文献+

贝叶斯集成框架下的极化SAR图像分类 被引量:13

Polarimetric SAR image classification via naive Bayes combination
下载PDF
导出
摘要 对于极化合成孔径雷达(SAR)图像,由于雷达角度和地物形状导致属于同一类的数据可能存在较大的差异性.针对此问题提出了一种基于贝叶斯集成框架的极化SAR图像分类方法.该算法采用贝叶斯集成,通过学习不同个体而获得的分类面来改善极化SAR图像分类性能.首先,输入极化SAR图像,并获得其对应的极化SAR数据及特征.从图像的每一类中任意选择像素点作为图像分类的原始训练样本,并对其进行随机划分获得不同的样本子集.然后,基于获得的样本子集构造对应极化SAR图像的贝叶斯集成框架.最后,通过构造的贝叶斯集成框架对极化SAR图像进行分类.特别在构造贝叶斯集成框架中采用支撑矢量机作为基本的分类器算法.实验结果表明,所提出的算法相比经典的极化SAR分类方法和单个SVM的极化SAR分类方法获得更好的分类性能. For PolSAR data, the pixels in the same class may have different appearances because of the topographical slopes and the radar look angle. To improve the image classification performance, a supervised polarimetric synthetic aperture radar image classification method is proposed based on Naive Bayes Combination. In the proposed method, the Naive Bayes Combination is adopted to learn different training samples to get classification surfaces in order to improve the classification results. Firstly, we extract some features and choose some pixels as the original training samples for the classification, and randomly divide the training samples into several training sample subsets. After that, the frame of Naive Bayes combination is obtained based on the training sample subsets. Finally, Naive Bayes Combination gives the final classification results. The support vector machine is used as the basic classifier algorithm in this paper for constructing the Naive Bayes Combination. The experimental results of L-band and C-band data of San Francisco demonstrate the effectiveness and robustness of the proposed method.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第2期45-51,共7页 Journal of Xidian University
基金 国家重点基础研究发展计划资助项目(2013CB329402) 国家自然科学基金资助项目(61271302 61272282 61202176 61271298) 国家教育部博士点基金资助项目(20100203120005)
关键词 极化合成孔径雷达 图像分类 贝叶斯集成 polarimetric synthetic aperture radar (PolSAR) image classification naive Bayes combination
  • 相关文献

参考文献16

  • 1Freeman A,Durden S L.A Three-component Scattering Model for Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973.
  • 2Yamaguchi Y,Moriyama T,Ishido M,et al.Four-component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(8):1699-1706.
  • 3Jiao Zhihao,Yang Jian,Yeh C M,et al.Modified Three-component Decomposition Method for Polarimetric SAR data[J].IEEE Geoscience and Remote Sensing Letters,2014,11(1):200-204.
  • 4Liu Gaofeng,Li Ming,Wang Yajun,et al.Four-component Scattering Power Decomposition of Remainder Coherency Matrices Constrained for Nonnegative Eigenvalues[J].IEEE Geoscience and Remote Sensing Letters,2014,11(2):494-498.
  • 5Wang Chunle,Yu Weidong,Wang R,et al.Comparison of Nonnegative Eigenvalue Decompositions with and without Reflection Symmetry Assumptions[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(4):2278-2286.
  • 6Zhang Hong,Xie Lei,Wang Chao,et al.Investigation of the Capability of H-decomposition of Compact Polarimetric SAR[J].IEEE Geoscience and Remote Sensing Letters,2014,11(4):868-872.
  • 7Cloude S R,Pottier E.A Review of Target Decomposition Theorems in Radar Polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518.
  • 8Lee J S,Grunes M R,Kwok T.Classification of Multi-look Polarimetric SAR Imagery Based on Complex Wishart Distribution[J].International Journal of Remote Sensing,1994,15(11):2299-1311.
  • 9Fukuda S,Hirosawa H.Support Vector Machine Classification of Land Cover:Application to Polarimetric SAR Data[C]//International Geoscience and Remote Sensing Symposium:1.Piscataway:IEEE,2001:187-189.
  • 10Fukuda S,Katagiri R,Hirsosawa H.Unsupervised Approach for Polarimetric SAR Image Classification Using Support Vector Machines[C]//International Geoscience and Remote Sensing Symposium:5.Piscataway:IEEE,2002:2599-2601.

二级参考文献38

  • 1丁晓松,金亚秋.海面上方运动目标和人造箔条云干扰的多普勒频移仿真[J].电波科学学报,2004,19(4):431-437. 被引量:7
  • 2J S Lee, M R Grunes, T L Ainsworth, et al.. Unsupervised classification using polarimetric decomposition and the complex Wishart elassifier[J]. IEEE Trans.Geosei. Remote Sensing, 1999, 37(5) : 2249-2258.
  • 3J S Lee, M R Grunes, E Pottier, et al.. Unsupervised terrain classification preserving polarimetric scattering characteristics [J]. IEEE Trans. Geosci. Remote Sensing, 2004, 42(4): 722-731.
  • 4S R Cloude and E Pottier. A review of target decomposition theorems in radar polarimetry [J]. IEEE Trans. Geosei. Remote Sensing, 1996, 34(2): 498-518.
  • 5S R Cloude, K P Papathanassiou and E Pottier. Radar polarimetry and polarimetrie interferometry[J]. IEICE Trans. Electron. , 2001, E84-C(12) : 1814-1822.
  • 6S R Cloude. Group theory and polarization algebra[J]. OPTIK, 1986, 75(1): 26-36.
  • 7Y Q Jin and S R Cloude. Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers[J]. IEEE Trans. Geosci. Remote Sensing, 1994, 32(6): 1179-1185.
  • 8J S Lee, D L Sehuler and T L Ainsworth. Polarimetric SAR data compensation for azimuth slope variation[J]. IEEE Trans. Geosci. Remote Sensing, 2000, 38(5): 2153-2163.
  • 9D L Sehuler and J S Lee. Compensation of terrain azimuthal slope effects in geophysical parameter studies using polarimetric SAR Data[J]. Remote Sensing of Environment, 1999, 39(17) : 139-155.
  • 10W L Cameron and L K Leung . Feature motivated polarization scattering matrix decomposition [C].Radar Conference, 1990, Record of the IEEE 1990 International, 1990,549-557.

共引文献16

同被引文献113

引证文献13

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部