期刊文献+

农村贫困人口的聚类与减贫对策分析 被引量:27

Clustering Analysis of the Rural Poverty Population and Poverty Reduction Strategies
下载PDF
导出
摘要 使用K-means聚类方法对我国农村贫困地区的贫困人口进行聚类,并进一步分析特殊类型贫困地区、集中连片贫困地区的贫困类型结构。结果表明,贫困类型的分布呈现了扶贫对象在区域间分布的不平衡性,各种贫困类型的不同特点和区域分布上的差异从一个视角揭示了收入差距特别是贫困程度差异化的来源。尤其是,少数民族地区的贫困特征和贫困人口比重都要比老区和边境县地区更加突出,而这些地区有着自身独特的特点和性质,尤其需要对少数民族地区贫困背后的形成机制开展更加深入的研究,以便提出针对少数民族地区的因地制宜的扶贫开发措施。连片特困地区的主导贫困类型各不相同,意味着片区扶贫开发需要具有片区针对性的扶贫政策。尽管聚类分析只是一种探索性分析,但是农村贫困人口的聚类仍然为我们定义各种贫困的类型、以及它们在不同区域或特定区域划分之间的内部分布结构提供了非常有价值的信息,并将为进一步的统计推断分析提供基础。 Using the method of K-means clustering, this paper makes the classification poverty population in rural China and thus the analysis of structure of poverty types in areas of special types of poverty and in contiguous poverty areas. The outcomes show that the targeted poor are disproportionately distributed among regions and the features of different types and their regional distribution can be treated as sources of income inequality especially the poverty levels. In particular, poverty characteristics are more notable and the poverty is lager in population in ethnic minority areas than those in old revolutionary base areas and border regions, which implicates that further research is required to explore the hiding mechanism causing poverty in ethnic minority areas so as to put forward poverty alleviation and development measures accommodating to local condition. Also, the leading poverty type is different among contiguous poverty-stricken areas, so that targeted policies are needed. Though clustering is mainly deemed as exploratory analysis, the clustering of rural poverty population still helps to make classifications and definitions of various types of poverty and the internal structure and regional distribution of these poverty types, which can contribute to further statistical inferences and causal analysis.
作者 王瑜 汪三贵
出处 《中国农业大学学报(社会科学版)》 CSSCI 北大核心 2015年第2期98-109,共12页 Journal of China Agricultural University;Social Sciences
基金 2010年国家社会科学基金重大招标项目"我国特殊类型贫困地区扶贫开发战略研究"(项目号:10zd&025) "中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目"(项目号:13XNH153)研究成果 国家留学基金委对第一作者在美访问研究的资助(录取文号:留金发[2013]3009)
关键词 农村贫困人口 K-MEANS聚类 特殊类型贫困 连片特困地区 区域分布 Rural poverty population K-means clustering Special types of poverty Contiguous poverty-stricken areas Geographical distribution
  • 相关文献

参考文献15

  • 1李因果,何晓群.面板数据聚类方法及应用[J].统计研究,2010,27(9):73-78. 被引量:79
  • 2Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 1998,2 ( 3 ) : 283 - 304.
  • 3Mundial B. From poor areas to poor people: China' s evolving poverty reduction agenda.
  • 4MacQueen J. Some methods for classification and analysis of multivariate observations: Proc. 5th Berkeley Symp. Mathematical Statist. Probability, 1967.
  • 5Huang Z. A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining. : Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'97) , 1997.
  • 6Hartigan J A, Wong M A. Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical So- ciety. Series C ( Applied Statistics) , 1979,28 ( 1 ) : 100 - 108.
  • 7Chuang K, Tzeng H, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 2006,30( 1 ) :9 - 15.
  • 8Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Comput. Surv. , 1999,31(3) :264 -323.
  • 9孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 10朱建平,陈民恳.面板数据的聚类分析及其应用[J].统计研究,2007,24(4):11-14. 被引量:100

二级参考文献11

  • 1诸克军,成金华,郭海湘.模糊软分类中最佳聚类数的确定[J].管理科学学报,2005,8(3):8-14. 被引量:15
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3朱建平,陈民恳.面板数据的聚类分析及其应用[J].统计研究,2007,24(4):11-14. 被引量:100
  • 4Bonzo D.C,Hennoeilla A.Y.Clustering panel data via perturbed adaptive simulated annealing and genetic algorithms[J].Advances in Complex Systems,2002(4):339-360.
  • 5Ben J,Shi Sh L.Multivarlable panel data ordinal clustering and its application in competitive strategy identification of appliance-wiring listed companies[C].International Conference on Management Science & Engineering(16th),Moscow,Russia,2009.253-258.
  • 6Hsiao C.Analysis of Panel Data[M].北京:北京大学出版社,2005.21-92.
  • 7Hsiso T. P. and Chih Y. Y. Comparison of Linear and Nonlinear Models for Panel Data Forecasting: Debt Policy in Taiwan [J]. Review of Pacific Basin Financial Markets and Policies,2005(3):525-541.
  • 8Bonzo D. C. and Hcrmosilla A. Y. Clustering Panel Data via Pertbed Adaptive Simulated Annealing and Genetic Algorithms [J]. Advances in Complex Systems, 2002(4) : 339-360.
  • 9Ramsay J. O. and Silverman B. W. Functional Data Analysis [ M ]. New York: Springer-Verlag New York, Inc, 1997. 11-83.
  • 10郑兵云.多指标面板数据的聚类分析及其应用[J].数理统计与管理,2008,27(2):265-270. 被引量:78

共引文献1223

同被引文献384

引证文献27

二级引证文献676

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部