期刊文献+

分数阶与年龄相关的随机种群系统的逼近控制 被引量:2

Approximate Controllability of Fractional Stochastic Age-Dependent Population Systems
原文传递
导出
摘要 讨论了一类分数阶与年龄相关的随机种群系统的逼近控制.通过不动点原理,分数阶性质和随机微分方程基本理论,建立了分数阶与年龄相关的随机种群控制系统弱解存在的必要条件,并给出了该系统逼近控制的条件,最后通过数值例子对所给出的结论进行了验证. In this paper,we introduce the approximate controllability of a class of fractional stochastic age-dependent population dynamic system.Using fixed point principle,fractional calculations,basic theory of stochastic differential equation,the new sufficient conditions for weak solution of fractional stochastic age-dependent population system is formulated,and also have given the conditions that the system is a approximate controllability.Finally,an example is provided to show the application of our result.
作者 马婧 张启敏
出处 《数学的实践与认识》 北大核心 2015年第6期230-239,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(11461053 11261043)
关键词 分数阶微分方程 随机种群系统 逼近控制 不动点原理 fractional differential equation stochastic population system approximate controllability fixed point principle
  • 相关文献

参考文献12

  • 1Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus [J]. Commun Nonlinear Sci Numer Simul, 2011, 16: 1140-53.
  • 2He J H. Nonlinear oscillation with fractional derivative and its applications Conference on Vibrating Engineering, Dalian, China, 1998: 288-291.
  • 3He J H. Some applications of nonlinear fractional differential equations and their approximations [J]. Bull Sci Technol, 1999, 15(2): 86-90.
  • 4Hang Xu. Analytical approximations for a population growth model with fractional order[J]. Com- mun Nonlinear Sci Numer Simulat, 2009, 14: 1978-1983.
  • 5Shaher Momani, Rami Qaralleh. Numerical approximations and Pad approximants for a fractional population growth model [J]. Appl Math Modell, 2007, 31: 1907-1914.
  • 6Cui Zhoujin, Yang Zuodong. Application of homotopy perturbation method to nonlinear fractional population dynamics models [J]. International Journal of Applied Mathematics and Computation, 2012, 4(4): 403-412.
  • 7Zhang Q M. Exponential stability of numerical solutions to a stochastic agestructured population svstem with diffusion[J].J. Commit A nl Math. 21108. 220: 22-33.
  • 8申芳芳,张启敏,杨洪福,李西宁.与年龄相关的模糊随机种群扩散系统的指数稳定性[J].数学的实践与认识,2014,44(7):187-195. 被引量:5
  • 9Zhang Q M, Wei DM. Necessary and sufficient conditions for near-optimal harvesting control prob- lem of stochastic age-dependent system [J]. Appl Math Comput, 2013, 221: 394-402.
  • 10Klamka J. Constrained exact controllability of semilinear systems [J]. Syst Control Lett, 2002, 47: 139-47.

二级参考文献12

  • 1Zhang Q, Rathinasamy A. Convergence of numerical solutions for a class of stochastic age-dependent capital system with random jump magnitudes[J]. Applied Mathematics and Computation, 2013, 219: 7297-7305.
  • 2Zhang Q, Wei D. Necessary and sufficient conditions for near-optimal harvesting control problem of stochastic age-dependent system[J]. Applied Mathematics and Computation, 2013, 221: 394-402.
  • 3Zhang Q, Han C. Existence and uniqueness for a stochastic age-structured population system with diffusion[J]. Applied Mathematical Modelling, 2008, 32: 2197-2206.
  • 4Li R, Leung P, Pang W. Convergence of numerical solutions to stochastic age-dependent population equations with Markovian switching[J]. Journal of Computationaland Applied Mathematics, 2009, 233: 1046-1055.
  • 5Wang L, Wang X. Convergence of the semi-implicit Euler method for stochastic age-dependent population equations with Poisson jumps[J]. Applied Mathematical Modelling, 2010, 34:2034-2043.
  • 6Feng Y. Fuzzy stochastic differential systems[J]. Fuzzy Sets and Systems, 2000, 115: 351-363.
  • 7M.T. Malinowski, Strong solutions to stochastic fuzzy differential equations of It6 type[J]. Mathe- matical and Computer Modelling, 2012, 55: 918-928.
  • 8M.T. Malinowski, It6 type stochastic fuzzy differential equations with delay[J]. Systems&: Control Letters, 2012, 61: 692-701.
  • 9Fei W. Existence and uniqueness for solutions to fuzzy stochastic differential equations driven by local martingales under the non-Lipschitzian condition[J]. Nonlinear Analysis, 2013, 76: 202-214.
  • 10苏方伟,胡良剑.模糊随机微分方程解的存在唯一性[J].模糊系统与数学,2009,23(4):66-73. 被引量:6

共引文献4

同被引文献19

  • 1张启敏,聂赞坎.一类随机人口发展系统的指数稳定性[J].控制理论与应用,2004,21(6):907-910. 被引量:27
  • 2Siqing Gan.EXACT AND DISCRETIZED DISSIPATIVITY OF THE PANTOGRAPH EQUATION[J].Journal of Computational Mathematics,2007,25(1):81-88. 被引量:12
  • 3李西宁,张启敏.与年龄有关的随机种群系统强解的存在性和唯一性(英文)[J].宁夏大学学报(自然科学版),2007,28(3):197-201. 被引量:3
  • 4Zhang Qimin,Liu Wenan,Nie Zankan.Existence,uniqueness and expoenential stability for stochastic age-dependent population[J].Applied Mathematics and Computation,2004,154:183-201.
  • 5Wang Lasheng,Wang Xiaojie.Convergence of the semi-implicit Euler mehhod for stochastic age-dependent population equations with Possion jumps[J].Applied Mathematical Modelling,2010,34:2034-2043.
  • 6Tan Jianguo,Rathinasamy A,Pei Yongzhen.Convergence of the split-stepθ-method for stochastic age-dependent population equations with Possion jumps[J].Applied Mathematics and Computation,2015,254:305-317.
  • 7Rathinasamy A.Split-stepθ-methods for stochastic age-dependent population equations with Markovian switching[J].Nonlinear Analysis:Real Word Applications,2012,13:1334-1345.
  • 8Ma Weijun,Zhang Qimin,Han Chongzhao.Numerical analysis for stochastic age-dependent population equationswith fractional Brownian motion[J].Commun Nonlinear Sci Numer Simulat,2012,17:1884-1893.
  • 9Ignatyev O,Mandrekar V.Barbashin-Krasovskii theorem for stochastic differential equations[J].Proc Amer Math Soc,2010,138:4123-4128.
  • 10Li Fengzhong,Liu Yungang.Global stability and stabilization of more general stochastic nonlinear systems[J].J Math Anal Appl,2014,413:841-855.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部