期刊文献+

基于深度学习的不完整大数据填充算法 被引量:12

Incomplete Big Data Imputation Algorithm Based on Deep Learning
下载PDF
导出
摘要 提出一种基于深度学习的不完整大数据填充算法.算法首先以自动编码机为基础建立填充自动编码机.在此基础上,构建深度填充网络模型,分析不完整大数据的深度特征并根据逐层训练思想和反向传播算法计算网络参数.最后利用深度填充网络来还原不完整大数据,对缺失值进行填充.实验表明,提出的算法能够有效提高不完整大数据的填充精度. This paper presents an impuation algorithm based on learning for incomplete big data.The proposed algorithm establishs a novel auto-encoder,called imputation auto-encoder,and then builds a deep imputation network model to analyze the deep features of incomplete big data and to calculate network parameters based on drill training ideas and back-propagation algorithm.Finally,the deep imputation network is used to impute the missing values.Experimental results show that the proposed algorithm can effectively improve the imputation accuracy for incomplete big data.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第12期173-176,共4页 Microelectronics & Computer
基金 国家重点自然科学基金(U1301253) 辽宁省自然科学基金(201202032)
关键词 深度学习 缺失数据填充 自动编码机 大数据 deep learning missing data imputation auto-encoder big data
  • 相关文献

参考文献7

  • 1Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1); 97-107.
  • 2Schafer J L, Graham J W. Missing data; our view of the state of the art [J]. Psychological methods, 2002, 7(2) : 147.
  • 3Wang X, Ao Li,Zhao hui,Jiang, et al. Missing value estimation for dna microarray gene expression data by support vector regression imputation and orthogonal coding scheme[J]. BMC Bioinformatics, 2006, 7 (1) : 32-37.
  • 4Li D, Jitender Deogun, Bill Shuarrt, et al. Towards missing data imputation: A study of fuzzy k-means clustering method [C] // Rough Sets and Current Trends in Computing. Berlin Heidelberg: Springer, 2004; 573-579.
  • 5武森,冯小东,单志广.基于不完备数据聚类的缺失数据填补方法[J].计算机学报,2012,35(8):1726-1738. 被引量:63
  • 6Hinton G E, Salakhutdinov R R. Reducing the dimen- sionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
  • 7Rahman M G, Islam M Z. FIMUS: A framework for imputing missing values using co-appearance, correla- tion and similarity analysis[J]. Knowledge-Based Sys- tems, 2014(56): 311-327.

二级参考文献2

共引文献62

同被引文献120

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部