期刊文献+

基于backstepping/RHO的变体飞机控制器设计 被引量:7

Design of a controller for morphing aircraft based on backstepping/RHO
原文传递
导出
摘要 为了确保变体飞机在变体过程中的飞行稳定性,提出了一种并行修正控制器设计方案.采用backstepping方法进行标称控制器设计,提供基本的飞行稳定性和跟踪性能.使用雅可比线性化方法对变体飞机非线性方程进行线性化得到线性化模型,采用基于指令滤波器的滚动时域优化(RHO,Receding Horizon Optimal)方法进行修正控制器设计.在有限时域区间内实时解算修正控制量,对标称控制器进行补偿.从航迹角控制系统仿真结果可以看出,航迹角能够较好地跟踪指令信号,基本不受变体过程的影响,飞行控制系统满足实时性和鲁棒性的要求. In order to ensure the flight stability of morphing aircraft in the morphing process,a parallel retrofit controller was proposed.The nominal controller was designed by the backstepping technique,which was used to provide the basic flight stability as well as the tracking performance.The nonlinear dynamic equations of the morphing aircraft were linearized by the Jacobian linearization approach,and a linearized model was obtained.The retrofit controller was designed by the receding horizon optimal(RHO) algorithm based on the command filter.The retrofit value was calculated within a finite horizon in real-time to compensate for the nominal controller.The simulation results of the flight path angle control system show that the flight path angle can track the command signal regardless of morphing process,and the flight control system satisfies the requirements of real-time and robustness.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第8期1060-1065,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60974146) 航空科学基金资助项目(20100753009)
关键词 变体飞机 修正控制器 BACKSTEPPING 滚动时域优化 航迹角 morphing aircraft retrofit controller backstepping receding horizon optimal flight path angle
  • 相关文献

参考文献3

二级参考文献27

  • 1胡云安,晋玉强,张友安,崔平远.基于神经网络的严反馈块非线性系统的鲁棒控制[J].控制与决策,2004,19(7):808-812. 被引量:14
  • 2董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 3Li Y, Qiang S, Zhuang X, et al. Robust and adaptive backstep ping control for nonlinear systems using RBF neural networks[J]. IEEE Trans. Neural Networks, 2004, 15 (3) : 693 - 201.
  • 4Du H, Shao H, Yao, P. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Trans, Neural Networks, 2006, 17(2): 509-514.
  • 5Ding Z. Universal disturbance rejection for nonlinear systems in output feedback form [J]. IEEE Trans. Automat. Contr. , 2003, 48 (7): 1222-1227.
  • 6Du H, Shao H, Yao P. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Trans. Neural Networks, 2006, 17 (2):509-514.
  • 7Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE Trans. Neural Networks, 2004, 15(3):674-692.
  • 8Ge S S, Zhang J, Lee T H. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete- Time[J]. IEEE Trans. Syst., Man, Cybern, 2004, 34 (4): 1630 - 1645.
  • 9Chen, Liu X B, Tong S. Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems[J]. IEEE Trans. Fuzzy Syst. , 2007, 15 (2), 287-299.
  • 10Snell S A, Enns D F,. Garrard W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4) : 976 - 984.

共引文献59

同被引文献82

  • 1Ligang GONG,Qing WANG,Changhua HU,Chen LIU.Switching control of morphing aircraft based on Q-learning[J].Chinese Journal of Aeronautics,2020,33(2):672-687. 被引量:14
  • 2史榕颀,宋建梅,张明亮.平面两自由度变形机翼的动力学建模与控制[J].兵工学报,2012,33(10):1194-1201. 被引量:1
  • 3Petres Z A. Polytopic Decomposition of Linear Parameter-Varying Models by Tensor-Product Model Transformation [ D ]. Budapest University of Technology and Economics, 2006.
  • 4Lu Q, Zhang L, Shi P, et al. Control Design for a Hypersonic Aircraft Using a Switched Linear Parameter-Varying System Ap- proach [ J ]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013, 227 ( 1 ) : 85-95.
  • 5Yue T, Wang L, Ai J. Longitudinal Linear Parameter Varying Modeling and Simulation of Morphing Aircraft[ Jl. Journal of Air- craft, 2013, 50(6): 1673-1681.
  • 6Bei L, Fen W, Sungwan K. Switching LPV Control of an F-16 Aircraft via Controller State Reset[J]. IEEE Trans on Control Sys- tems Technology, 2006, 14(2) : 267-277.
  • 7Lu B, Wu F. Switching LPV Control Designs Using Multiple Parameter-Dependent Lyapunov Functions [ J]. Automatica, 2004, 40(11) : 1973-1980.
  • 8Lu Q, Zhang L, Shi P, et al. Control Design for a Hypersonic Aircraft Using a Switched Linear Parameter-Varying System Ap- proach[ J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013, 227 ( 1 ) : 85-95.
  • 9He X, Dimirovski G M, Dimirovski G M, et al. Control of Switched LPV Systems Using Common Lyapunov Function Method and an F-16 Aircraft Application[ C]/2010 IEEE International Conference on Systems Man and Cybernetics, 2010.
  • 10Lu B, Wu F. Switching LPV Control Designs Using Multiple Parameter-Dependent Lyapunov Functions[ J]. Automatica, 2004, 40(11) : 1973-1980.

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部