期刊文献+

基于集成隐马尔可夫模型的轴承故障诊断 被引量:10

Integrated HMM-based bearing fault diagnosis
下载PDF
导出
摘要 对轴承振动信号进行时频分析获得全特征集;运用距离补偿法提取轴承故障敏感特征获得敏感特征集。两种特征集在用于训练、测试轴承状态时不仅诊断率不同,且误判样本亦不同。基于此,提出基于集成隐马尔可夫模型的轴承故障诊断方法。采用两种特征集分别建立两独立隐马尔可夫模型;运用平均法则、最大似然概率法集成隐马尔可夫模型分类效果;对轴承信号进行故障诊断。实验结果表明,与基于敏感特征集、全特征集的分类器相比,该模型分类器在轴承故障诊断中识别精度更高。 Full features of a bearing vibration signal in time and frequency domain were extracted at first.A compensation method based on distance was used to choose features sensitive to bearing faults.Then full features and sensitive features vectors were built.The results using hidden markov model (HMM)based on those two features were different.Then the method of integrated HMM for bearing fault diagnosis was proposed.Based on independent HMM classifiers trained with those two different feature vectors,the average rule and the maximum likelihood probability method were used to integrate the two HMM classifiers.The experimental results showed that the proposed method has a higher recognition rate compared with the two independent classifiers based on different feature vectors.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第10期92-96,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51175329)
关键词 轴承故障诊断 补偿距离评估技术 隐马尔可夫模型 bearing fault diagnosis evaluation technique based on compensation distance
  • 相关文献

参考文献8

二级参考文献28

  • 1柳新民,邱静,刘冠军.基于连续高斯密度混合HMM的滚动轴承故障诊断研究[J].机械传动,2005,29(1):7-10. 被引量:5
  • 2宋雪萍,马辉,毛国豪,闻邦椿.基于CHMM的旋转机械故障诊断技术[J].机械工程学报,2006,42(5):126-130. 被引量:12
  • 3朱忠奎,顾军,芮延年,伍小燕,刘刚.基于连续小波和统计检验的瞬态成分检测与应用[J].振动工程学报,2006,19(4):559-565. 被引量:4
  • 4Patil M S, Mathew J, RajendraKumar P K. Bearing signature analysis as a medium for fault detection: a review[ J ]. Journal of Tribology, 2008, 130( 1 ) : 014001 - 1 -7.
  • 5Antoni J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions [ J ]. Journal of Sound and Vibration, 2007, 304 ( 3 - 5 ) : 497 - 529.
  • 6Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets [ J ]. NDT&E International, 2002, 35(3) : 197 -205.
  • 7Ekici S, Yildirim S, Poyraz M. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition [J]. Expert Systems with Applications, 2008, 34 ( 4 ) : 2937 - 2944.
  • 8Rabiner L R, Juang B H. An introduction to hidden Markov models[ J]. IEEE ASSP magazine, 1986, 3 ( 1 ) : 4 - 16.
  • 9Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition [ J ]. Proceedings of the IEEE, 1989, 77(2): 257-286.
  • 10Bunks C, McCarthy D, A1-Ani T. Condition-based mainte- nance of machines using hidden Markov models [ J]. Mechani- cal Systems and Signal Processing, 2000, 14 (4) : 597 -612.

共引文献155

同被引文献96

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部