期刊文献+

载人月球车等效侧倾刚度和阻尼计算方法 被引量:3

Calculation Approach of the Equivalent Roll Stiffness and Damping of the Lunar Roving Vehicle
下载PDF
导出
摘要 载人月球车是月面探测必不可少的探测工具,以载人月球车为主的月面活动技术是载人探月及建立月球基地的关键技术。载人月球车移动系统作为承载平台不仅要承担一定的重量,还要保证宇航员在行驶中安全,需要研究其操纵稳定性,而在进行其操纵动力学建模时,等效侧倾刚度和阻尼取值的准确性直接影响其侧翻安全性计算的准确性。在通过对双横臂扭杆悬架结构的载人月球车瞬时侧倾刚度和阻尼进行数学建模时,发现其随车身的侧倾运动发生变化,而不为定值;当采用整个侧倾运动过程中的能量等效的方法,得到的等效侧倾刚度随车身的侧倾运动变化较小,接近定值。因此对不同的等效侧倾刚度与阻尼的取值方法下操纵动力学方程的计算结果与载人月球车的操纵动力学仿真结果进行对比与分析,得到较为精确的等效侧倾刚度和阻尼的取值方法,为载人月球车的操纵动力学和侧翻安全性的研究奠定基础。 Lunar roving vehicle (LRV) is indispensable in the mission of the lunar exploration, and the technology of the lunar surface activity is the key of the manned lunar exploration and the establishment of the lunar base. The LRV not only needs to take the payload, but also should guarantee the astronauts’ safety in moving. Therefore the handling stability of the LRV needs to be researched, and the equivalent roll stiffness and damping are the important parameters in the dynamics equations and affect the computational accuracy of the roll-over performance. The instantaneous equivalent roll stiffness and damping of the double wishbone arm type of LRV have been calculated, and the results show that they are not constant values and but are variable during the rolling movement. However the roll equivalent stiffness is approximately a constant value when the energy equivalence approach of the rolling process is adopted. Thus, the calculations of the dynamical equations with different roll stiffness and damping values of the different methods are contrast with the dynamical simulation of the LRV, the accurate equivalent roll stiffness and damping value are obtained through the analysis, and it will lay the foundation for the research of the handling dynamics and roll-over safety of the LRV.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第5期1-13,共13页 Journal of Mechanical Engineering
基金 国家自然科学基金(51275106 61005080) 新世纪优秀人才支持计划(NCET-10-0055) '111'工程(B07018) 国家重点基础研究发展计划(973计划 2013CB035502) 中国航天科技集团公司-哈尔滨工业大学联合技术创新中心技术创新(CASC-HIT11-1A03)资助项目
关键词 载人月球车 操纵稳定性 等效侧倾刚度与阻尼 月面低重力 操纵动力学仿真 lunar roving vehicle handling stability equivalent roll stiffness and damping low gravity on lunar handling dynamic simulation
  • 相关文献

参考文献15

  • 1MITSCHKE M,WALLENTOWITZ H.Dynamik derkraftfahrzeuge[M].Berlin:Springer,2003.MITSCHKE M,WALLENTOWITZ H.Dynamics ofmotor vehicles[M].Berlin:Springer,2003.
  • 2BOADA M J L,BOADA B L,QUESADA A,et al.Activeroll control using reinforcement learning for a single unitheavy vehicle[C]// 12th IFToMM World Congress ,June18-21,2007,Besanon,France,2007:1-6.
  • 3GASPAR P,SZABO Z,BOKOR J,et al.Prediction basedcombined control to prevent the rollover of heavyvehicles[C]// Proceedings of the 13th MediterraneanConference on Control and Automation,June 27-29,2005,Imassol,Cyprus,2005:575-580.
  • 4JAMES J,ZAKRAJSEK,DAVID B,et al.Explorationrover concepts and development chanllenges[C]// The 1stSpace Exploration Conference:Continuing the VoyageDiscovery,2005,USA,2005:1-23.
  • 5邓宗全,范雪兵,高海波,丁亮.载人月球车移动系统综述及关键技术分析[J].宇航学报,2012,33(6):675-689. 被引量:36
  • 6韩鸿硕,石卫平,蒋宇平.2008年世界深空探测获得丰硕成果(上)[J].中国航天,2009(2):43-45. 被引量:2
  • 7HAMBLIN B,MARTINI R,CAMERON J T,et al.Lowordermodeling of vehicle roll dynamics[C]// Proceedingsof American Control Conference,Minneapolis,June14-16,2006,Minnesota,USA,2006:4008-4015.
  • 8ZHAO S,LI Y,ZHENG L,et al.Vehicle lateral stabilitycontrol based on sliding mode control[C]// Proceedings ofthe IEEE International Conference on Automation andLogistics,2007,Jinan,China,2007:638-642.
  • 9高海波,梁忠超,丁亮,邓宗全,曲建俊.具有解耦功能的二维倾角模拟装置[J].机械工程学报,2012,48(19):1-9. 被引量:2
  • 10丁亮,高海波,邓宗全,熊历冰,郭军龙,吕焱.基于月球车轮地作用地面力学积分模型的月壤力学参数辨识方法[J].航空学报,2011,32(6):1112-1123. 被引量:10

二级参考文献90

共引文献147

同被引文献21

  • 1李雯,高峰,孙鹏.复合材料深空探测车车轮的设计[J].吉林大学学报(工学版),2006,36(4):502-505. 被引量:5
  • 2RICHTER L, ELLERY A, CAN Y, et al. A predictive wheel soil interaction model for planetary rovers validated in test beds and against MER mars rover performance data[C]//10th European Conference of the International Society for Terrain-Vehicle Systems, Berlin: European Planetary Science Congress, 2006, 18-22.
  • 3MILLER D P, HUNT T, ROMAN M, et al. Experiments with a long-range planetary rover[C]//Proceeding of the 7th International-Symposium on Artificial Intelligence, Robotics and Automation in Space, Oklahoma: University of Oklahoma Norma, 2003: 1-9.
  • 4FALK A. Advanced mobility in difficult terrain[J]. Joumal ofTerramechanics, 2004, 41(2): 101-111.
  • 5BEKKER G. Theory of land locomotion[M]. Ann Arbor: University of Michigan Press, 1956.
  • 6AUBEL T. The interaction between the rolling tyre and the soft soil-FEM simulation by VENUS and validation[C]//Proceedings of the European ISTVS Conference, Vienna: European ISTVS, 1994: 169-188.
  • 7CHIROUXRC, FOSTER WA, JOHNSON CE, etal. Three-dimensional finite element analysis of soil interaction with a rigid wheel[J]. Applied Mathematics and Computation, 2005, 162(2): 707-722.
  • 8LEWIS B A. Manual for LS-DYNA soil material model 147[R]. Washington. Department of Transportation, Federal High way Administration, 2004: 10-13.
  • 9BEKKER G, Introduction to terrain-vehicle systems[M]. Michigan: University of Michigan Press, 1969.
  • 10SHIBLY H, IAGNEMMA K, DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1): 1-13.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部