期刊文献+

基于稀疏点云的多平面场景稠密重建 被引量:13

Dense Multi-planar Scene Reconstruction from Sparse Point Cloud
下载PDF
导出
摘要 多平面场景是生活中常见的一种场景,然而由于该类场景中常常存在物体表面纹理缺乏和纹理重复的现象,导致从多视图像重建获得的三维点云数据中存在点云过于稀疏甚至孔洞等问题,进而导致以微面片拟合三维点云所得到的重建表面出现平面颠簸现象.针对这些问题,本文提出了一种基于稀疏点云的分段平面场景重建方法.首先,利用分层抽样代替随机抽样,改进了J-Linkage多模型估计算法;然后,利用该方法对稀疏点云进行多平面拟合,来获得场景的多平面模型;最后,将多平面模型和无监督的图像分割相结合,提取并重建场景中的平面区域.场景中的非平面部分用CMVS/PMVS(Clustering views for multi-view stereo/patch-based multi-view stereo)算法重建.多平面模型估计的实验表明,改进的J-Linkage算法提高了模型估计的准确度.三维重建的实验证实,提出的重建方法在有效地克服孔洞和平面颠簸问题的同时,还能重建出完整平面区域. There are multi-planar scenes everywhere in our daily life. However, given its lack and self-repeat of the texture, there would be problems of over scarcity and holes on the reconstructed point cloud by the method of multi-view reconstruction. Further, there would be vacillation over the reconstructed facades using the method of fitting the reconstructed point cloud with miniature facets. To address these problems, we propose a method of piecewise reconstruction of each plane from the sparse point cloud. The proposed method first improves the J-linkage algorithm, with the stratified sampling instead of the random sampling. We then fit the point cloud with planes using the improved J-linkage algorithm, to obtain the multi-planar model of the scene. Finally, we extract and reconstruct the planar regions with the multi-planar model as well as an unsupervised segmentation algorithm. Besides, the non-planar areas are reconstructed by using the clustering views for multi-view stereo/patch-based multi-view stereo (CMVS/PMVS) algorithm. Experimental results of the multi-planar model demonstrate that the improved J-linkage algorithm can enhance the accuracy of the multi-planar model. Also, the experimental results of 3D reconstruction show that our method not only can effectively overcome holes and jaggies problems, but also can model the complete planar regions.
出处 《自动化学报》 EI CSCD 北大核心 2015年第4期813-822,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61263046 61462065) 江西省自然科学基金(20122BAB201037)资助~~
关键词 多视重建 三维重建 多模型估计 图像分割 Multi-view reconstruction 3D reconstruction multiple structures estimation image segmentation
  • 相关文献

参考文献26

  • 1Vanegas C A, Aliaga D G, Wonka P, Miiller P, Waddell P, Watson B. Modelling the appearance and behaviour of ur- ball spaces. Computer Graphics Forum, 2010, 29(1): 25-42.
  • 2Sheppard S R J, Cizek P. The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisa- tion..Journal of Environmental Management, 2009, 90(6): 2012-2117.
  • 3史利民,郭复胜,胡占义.利用空间几何信息的改进PMVS算法[J].自动化学报,2011,37(5):560-568. 被引量:28
  • 4Simon L, Teboul O, Koutsourakis P, Van Gool L, Para- gios N. Parameter-free/Pareto-driven procedural 3D recon- struction of buildings from ground-level sequences. In: Pro- ceedings of the 2012 IEEE Conference on Computer Visionand Pattern Recognition. Rhode Island, USA: IEEE, 2012. 518-525.
  • 5Vanegas C A, Aliaga D G, Benes B. Automatic extraction of manhattan-world building masses from 3D laser range scans. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(10): 1627-1637.
  • 6Agarwal S, Furukawa Y, Snavely N, Simon I, Curless B, Seitz S M, Szeliski R. Building rome in a day. In: Proceedings of the 12th International Conference on Computer Vision. Ky- oto, Japan: IEEE, 2009. 72-79.
  • 7Miufk B, KoeckA ,L Multi-view superpixel stereo in ur- ban environments. International Journal of Computer Vi- sion, 2010, 89(1): 106-119.
  • 8Snavely N, Simon I, Goesele M, Szeliski R, Seitz S M. Scene reconstruction and visualization from community photo col- lections. Proceedings of the IEEE, 2010, 98(8): 1370-1390.
  • 9Bartoli A, Sturm P. Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. In- ternational Journal of Comp1ter Vision, 2003, 52(1): 45-64.
  • 10Zhou Z H, Jin H L, Ma Y. Robust plane-based structure from motion. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE, 2012. 1482-1489.

二级参考文献27

  • 1Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R. Multi-view stereo evaluation [Online], available: http://vision. middlebury.edu/mview/, June 10, 2010.
  • 2Strecha C. Multi-view stereo evaluation web page [Online], available: http://cvlab.epfl.ch/~ strecha/multiview/, June 10, 2010.
  • 3Paris S, Sillion F X, Quan L. A surface reconstruction method using global graph cut optimization. International Journal of Computer Vision, 2006, 66(2): 141-161.
  • 4Pons J P, Keriven R, Faugeras O D. Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. International Journal of Computer Vision, 2007, 72( 2): 179-193.
  • 5Tran S, Davis L S. 3D surface reconstruction using graph cuts with surface constraints. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 219-231.
  • 6Hornung A, Kobbelt L. Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 503-510.
  • 7Kutulakos K N, Seitz S M. A theory of shape by space carving. International Journal of Computer Vision, 2000, 38(3): 199-218.
  • 8Seitz S M, Dyer C R. Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision, 1999, 35(2): 151-173.
  • 9Strecha C, Fransens R, Van G L. Combined depth and outlier estimation in multi-view stereo. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2006. 2394-2401.
  • 10Bradley D, Boubekeur T, Heidrich W. Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.

共引文献27

同被引文献96

引证文献13

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部