期刊文献+

基于压缩感知的OMP图像重构算法改进 被引量:10

Improvement of OMP Image Reconstruction Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 阐述了压缩感知相关理论以及信号的重构算法,围绕其中的匹配追踪系列算法展开研究,同时在正交匹配追踪算法(OMP算法)的基础上引入了几种改进算法,并结合OMP算法本身耗时长、速度慢的问题,给出了一种OMP的改进方案,该方案将图像进行分块再处理,从而大幅降低了OMP算法迭代的矩阵规模。在相同条件下该算法的主客观重建效果均优于原来的算法。 Compressed sensing (CS) theories and the reconstruction algorithm of signals are discussed. Research is done on the matching pursuit algorithms. An improvement scheme for OMP algorithm is given. To increase the convergence speed of the OMP algorithm, the image to be processed is divided into some blocks. The new scheme could significantly improve the computation efficiency. With identical conditions, the algorithm is better than the traditional one in both objective and subjective reconstruction.
作者 马小薇
出处 《电子科技》 2015年第4期51-53,56,共4页 Electronic Science and Technology
关键词 压缩感知 重构算法 匹配追踪 图像重构 compressed sensing reconstruction algorithm matching pursuit image reconstruction
  • 相关文献

参考文献11

  • 1Cand~s E. Compressive sampling [ C ]. Madrid, Spain:Pro- ceedings of the International Congress of Mathematicians, 2006,3 : 1433 - 1452.
  • 2Candies E, Romberg J, Terence Tao. Robust uncertainty prin- ciples: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Transactions on Informa- tion Theory ,2006,52 (2) : 1289 - 1306.
  • 3Donoho D L. Compressed sensing I J]. IEEE Transactions on Informa2tion Theory,2006,52 (4) :72 - 82.
  • 4Cand~s E J, Romberg J. Practical signal recovery from ran- domprojections [ C ]. Proceedings of SPIE Computational Im- aging 111:2006:76 - 86.
  • 5Donoho D L, Tsaig Y. Extensions of compressed sensing [ J ]. Signal Processing,2006,86 ( 3 ) : 549 - 571.
  • 6刘丹华,石光明,周佳社.一种冗余字典下的信号稀疏分解新方法[J].西安电子科技大学学报,2008,35(2):228-232. 被引量:35
  • 7Osher S, Mao Y, Dong B, at el. Fast linearized bregman itera- tion for compressive sensing and sparse denoising [ R ]. Nol- ogy, Rice USA:Department of Computational and Applied Mathematices, Rice University ,2008.
  • 8谢志鹏.迭代式正交匹配追踪及稀疏解[J].微电子学与计算机,2009,26(10):53-56. 被引量:9
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 10方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27

二级参考文献111

共引文献787

同被引文献60

  • 1阎淑芳,呼庆媛,贾正锐,金凤阁.机动车驾驶员操作技能分析[J].人类工效学,1997,3(2):60-61. 被引量:2
  • 2杨彬,黄耀志.基于PERCLOS的汽车司机疲劳监控方法的研究[J].微计算机信息,2005,21(08X):119-121. 被引量:17
  • 3Wierwille W W, Ellsworth L A, Wreggit S S, Fairbanks R J, Kirn C L. Research on vehicle-based driver status/per- formance monitoring; development, validation, and refine ment of algorithms for detection of driver drowsiness. Final report[R]. U.S. Department of Transportation. 1994.
  • 4Thorne D R, Johnson D E, Redmond D P, Sing H C, Belenky G, Shapiro J M. The Walter Reed palm-held psy- chomotor vigilance test[J].Behavior Research Methods, 2005, 37(1): 111-118.
  • 5陈信.鉴定疲劳的方法研究[J].航天医学工程研究所论文汇编,1978,1(1):1-10.
  • 6Li Q, Song K. The realization and software design of fatigue driving early warning device[J]. Journal of Liaoning Uni versity: Natural Science Edition, 2004, 30(4) : 367-369.
  • 7Haupt J, Nowak R. Signal reconstruction from noisy ran- dom projections[J].Information Theory, IEEE Transac- tions on, 2006, 52(9): 4036-4048.
  • 8Huang J, Huang X, Metaxas D. Learning with dynamic group sparsity[C]. Computer Vision, 2009 IEEE 12th In- ternational Conference on. IEEE, 2009: 64-71.
  • 9Mairal J, Bach F, Ponce J, Sapiro G. Online dictionary learning for sparse coding[C]. Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009: 689-696.
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部