期刊文献+

基于广义似然比的小波域SAR图像相干斑抑制算法

Generalized Likelihood Ratio Based SAR Image Speckle Suppression Algorithm in Wavelet Domain
下载PDF
导出
摘要 在联合检测与估计理论框架下推导出了Bayes萎缩函数表达式,并提出了一种基于广义似然比的小波域SAR图像去斑算法.该算法对含斑SAR图像直接做冗余小波变换,求出小波系数所对应的二值掩模;对相干斑噪声和有用信号的似然条件概率分别建模为尺度指数分布和Gamma分布,根据二值掩模信息,采用最大似然估计得到两种模型的参数并计算似然条件概率比.实验结果表明:文中所给算法在有效滤除斑点噪声的同时,也较好地保持了图像的细节信息,在对人工加斑图像和多幅实际SAR图像的处理中获得了令人满意的结果. A Bayes shrinkage formula is derived under the framework of joint detection and estimation theory,and a wavelet SAR image despeckling algorithm is realized based on generalized likelihood ratio. Firstly,redundant wavelet transform is performed directly to the original speckled SAR images,and binary mask is obtained for each wavelet coefficient. We use scale exponential distribution and Gamma distribution,respectively,to model the likelihood conditional probability of speckle noise and useful signal. According to the mask,the parameters of the two modes are estimated by maximum likelihood estimation method,and thus the likelihood conditional probability ratio is calculated. Experiment results show that the proposed method can effectively filter the speckle noise,and at the same time preserve the image details as possible. Satisfactory results are achieved on both synthetically speckled images and real SAR images.
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2015年第1期93-98,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61141010 61201448) 湖北省自然科学基金资助项目(2012FFA113)
关键词 联合检测与估计 SAR图像去斑 小波变换 广义似然比 joint detection and estimation SAR image despeckling wavelet transform generalized likelihood ratio
  • 相关文献

参考文献15

  • 1Lee J S. Refined filtering of image noise using local statistics[ J ]. Computer graphics and image processing, 1981, 15(4) : 380-389.
  • 2Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985 (2): 165-177.
  • 3Kuan D T, Sawchuk A, Strand T C, et al. Adaptive restoration of images with speckle [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(3): 373-383.
  • 4Lopes A, Nezry E, Touzi R, et al. Structure detection and statistical adaptive speckle filtering in SAR images [ J]. International Journal of Remote Sensing, 1993, 14 (9) : 1735-1758.
  • 5Donoho D L. Ideal spatial adaptation via wavelet shrin- kage [ J ]. Biometrica, 1994, 81 : 424-455.
  • 6Argenti F, Lapini A, Bianchi T, et al. A tutorial on speckle reduction in synthetic aperture radar images [ J ].IEEE Geoscience and Remote Sensing Magazine, 2013, 1(3) : 6-35.
  • 7侯建华,毛晓晖.基于正态反高斯先验模型的小波去噪算法[J].中南民族大学学报(自然科学版),2009,28(3):85-89. 被引量:1
  • 8Xie H, Pierce L E, Ulaby F T. SAR speckle reduction using wavelet denoising and Markov random field modeling [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2196-2212.
  • 9Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 (8): 1773-1784.
  • 10Jian-Hua Hou, Xiang-Ming Liu, Cheng-Yi Xiong, Xiang He. Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain [ J ]. Optical Engineering, 2008, 47 (5) : 057004-1 -- 057004-11.

二级参考文献14

  • 1Mallat S. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674-693.
  • 2Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans Image Processing, 2000, 9(9): 1 532-1 546.
  • 3Chipman H A, Kolaczyk E D , McCulloeh R E. Adaptive Bayesian Wavelet Shrinkage[J]. Journal of the American Statistics Association, 1997, 92 (12) : 1 413-1 421.
  • 4Crouse M S, Nowak R D , Baraniuk R G. Waveletbased statistical signal processing using hidden Markov models [J]. IEEE Trans Signal Processing, 1998, 46 (4): 886-902.
  • 5Simoncelli E P. Modeling the joint statistics of images in the wavelet domain [J]. Proceedings of SPIE, 1999, 3 813: 188-195.
  • 6Bhuiyan M I H. Spatially adaptive thresholding in wavelet domain for despeckling of ultrasound images [J]. IET Image Processing,2009,3(3) : 147-162.
  • 7Bhuiyan M I H. Wavelet-based image denoising with the normal inverse Gaussian prior and linear MMSE estimator [J]. IET image Processing, 2008, 12 (4): 207.
  • 8Pizuriea A,Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising [J]. IEEE Trans,2006,15(3) : 657-658.
  • 9Bhuiyan M I H, M. Omair Ahmad. Wavelet-based denoising of medical ultrasound images with the symmetric normal inverse Gaussian prior[J]. IEEE International Conference on Acoustics, Speech and Signal Processing,2007,1(4) : 1 721-1 724.
  • 10Bhuiyan M I H,Ahmad M O. On the performance of non-gaussian distributions in modelling the wavelet coefficients of medical ultrasound images [J]. IEEE International Conference on Electronics, Circuits and Systems, 2007(11):1 372-1 375.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部