期刊文献+

基于类内离散度的最小二乘支持向量机

Least Squares Support Vector Machine Based on Within-class Scatter
下载PDF
导出
摘要 支持向量机是一种很流行的机器学习方法,在许多领域都有了广泛的使用。传统的支持向量机模型是寻求类之间的间隔最大化,而忽视了一个重要的信息—样本的类内结构,类内离散度。文中将Fisher判别分析里面的类内离散度引入到最小二乘支持向量机中,提出了基于类内离散度的最小二乘支持向量机模型。并通过核函数将样本映射到高维特征空间,在特征空间中进行样本分类。基于UCI数据库的数据集实验测试表明,基于类内离散度的最小二乘支持向量机提高了分类的准确度。 Support vector machine (SVM) is a popular machine learning technique, and it has been widely used in many real-world applications. Traditional SVMs aims at seeking the hyperplane that maximizes the margin and ignores an important prior knowledge, the within-class structure. It formulates a Least Square Support Vector Machine (LSSVM) based on within-class scatter for binary classification,which incorporates minimum within-class scatter in Fisher Discriminant Analysis (FDA) into LSSVM. The sample points are mapped to a high dimensional feature space where the samples are classified by using the kernel method. Experiments on four benchmarking datasets based on UCI show that the proposed WCS-LSSVM can improve the classification accuracy.
作者 薛松 李雷
出处 《计算机技术与发展》 2015年第4期71-74,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61373137)
关键词 类内离散度 分类 最小二乘支持向量机 核方法 within-class scatter classification least squares support vector machine kernel methods
  • 相关文献

参考文献16

  • 1Cortes C, Vapnik V. Support- vector networks [ J].Machine Learning, 1995,20(3) :273-297.
  • 2刘文,吴陈.一种新的中文文本分类算法——One Class SVM-KNN算法[J].计算机技术与发展,2012,22(5):83-86. 被引量:4
  • 3王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,16(8):24-26. 被引量:12
  • 4雷虎,樊泽明.基于SVM和D-S理论的三维人脸识别[J].计算机技术与发展,2014,24(6):75-78. 被引量:2
  • 5Scholkopf B,Smola A J, Williamson R C, et al. New support vector algorithms [ J ]. Neural Computation ,2000,12 ( 5 ) : 1207 -1245.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [ J ]. Neural Processing Letters, 1999,9 (3) :293-300.
  • 7Lin Chunfu, Wang Shengde. Fuzzy support vector machines [ J ]. IEEE Transactions on Neural Network ,2002,13 (2) :464 -471.
  • 8Mangasarian O L, Musicant D R. Lagrangian support vector machines[ J ]. Journal of Machine Learning Research, 2001, 1:161-177.
  • 9Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 ( 5 ) : 905 -910.
  • 10Zafeiriou S, Tefas A, Pitas I. Minimum class variance support vector machines [ J ]. IEEE Transactions on Image Processing, 2007,16(10) :2551-2564.

二级参考文献84

共引文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部