期刊文献+

基于压缩感知和正弦字典的语音编码新方案

A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary
下载PDF
导出
摘要 文中提出一种压缩感知框架采样下的语音编码方案。根据压缩感知原理,利用行阶梯矩阵投影产生的观测序列保留了部分语音信息的时域特征,利用正弦字典和匹配追踪算法对观测序列进行建模,对于每帧观测序列的模型参数,根据各自特性采用合适的编码方式进行编码。在解码端对解码后的观测序列利用基追踪算法重构合成语音,并后置低通滤波器提高合成语音的人耳听觉效果。仿真实验表明,提出的编码方案在2.8~5.7 kbps时得到的合成语音平均MOS分为2.81~3.23,在压缩感知框架下取得了较好的语音编码效果。 A novel speech coding method based on compressed sensing is proposed in this paper. Based on compressed sensing theory ,the row echelon matrix retains parts of speech time domain features in the measurements,and utilize a sinusoidal dictionary and matching pur- suit for measurements sequence modeling. The model parameters are encoded by appropriate methods respectively. At the decoder, basis pursuit algorithm employs the decoded measurements for synthesized speech reconstruction. A rear low-pass filter is adopted to improve auditory effects. Simulation results show the average MOS scores of the synthesis speech are between 2.81 - 3.23 in low bit rate ( 2.8 N 5.7 kbps), which achieves a preferable coding effect in compressed sensing framework.
出处 《计算机技术与发展》 2015年第4期188-192,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61271335) 国家重点基础研究发展计划(2011CB302303)
关键词 压缩感知 行阶梯观测矩阵 正弦字典 参数编码 矢量量化 compressed sensing row echelon matrix sinusoidal dictionary parameter coding vector quantization
  • 相关文献

参考文献12

  • 1Donoho D L. Compressed sensing[ J]. IEEE Trans on Informa- tion Theory,2006,52 ( 4 ) : 1289-1306.
  • 2Donoho D L, Tsaig Y. Extensions of compressed sensing [ J ]. Signal Processing ,2006,86(3 ) :533-548.
  • 3Candes E J,Wakin M B. An introduction to compressive sam- piing [ J ]. IEEE Signal Processing Magazine, 2008,25 ( 2 ) : 21 -30.
  • 4Kassim L A, Khalifa O O, Gunawan T S, et al. Compressive sensing based low bit rate speech encoder[ C]//Proc of 2012 international conference on computer and communication engi- neering. [ s. 1. ]: [ s. n. ] ,2012:302-307.
  • 5Li R, Gan Z L, Cui Z G, et al. Side information extrapolation using motion- aligned auto regressive model for compressed sensing based Wyner-Ziv codec[ J]. KSII Transactions on In- ternet and Information Systems,2013,7(2) :366-385.
  • 6Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI [ J ]. IEEE Signal Processing Magazine,2008,25 ( 2 ) : 72- 82.
  • 7Xu Tao, Wang Wenwu. A compressed sensing approach for un- derdetermined blind audio source separation with sparse repre- sentation[ C ]//Proc of IEEE/SP 15th workshop on statistical signal processing. Cardiff: IEEE,2009:493-496.
  • 8叶蕾,杨震,郭海燕.基于小波变换和压缩感知的低速率语音编码方案[J].仪器仪表学报,2010,31(7):1569-1575. 被引量:23
  • 9Giacobello G, Christense M G, Murthi M N, et al. Retrieving sparse patterns using a compressed sensing framework:appli- cations to speech coding based on sparse linear prediction [ J ]. IEEE Signal Processing Letters ,2010,17 ( 1 ) 103-106.
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712

二级参考文献127

  • 1乔建华,张井岗,张雪英.基于MATLAB的8kb/s CS-ACELP语音编码算法及实现[J].仪器仪表学报,2002,23(z1):194-195. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3孔红山,朱良学,章四兵.FS-1016 CELP语音编码的算法仿真[J].合肥工业大学学报(自然科学版),2006,29(10):1227-1230. 被引量:1
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献740

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部