期刊文献+

焦炉立火道温度的ANFIS建模与模糊控制的研究

ANFIS Modeling for Coke Oven Flame Path Temperature and Research on Fuzzy Control
下载PDF
导出
摘要 针对焦炉立火道温度系统的复杂多变等特性,采用自适应神经模糊推理系统(ANFIS)方法中所具有的模糊经验知识和神经网络中的自学习功能等优点,解决焦炉温度模型高耦合性、多变性和不确定性问题,进而建立ANFIS辨识模型。同时,在模糊控制器中引进遗传优化算法,实时调整模糊隶属度规则,以达到平稳、快速、准确的控制要求。Matlab仿真证明了该方案的可行性和有效性。所设计的方案将为以后焦炉立火道温度的控制优化的研究提供理论性的指导。 In view of the complex and changeable characteristics of the vertical flame path in coke oven, by adopting the fuzzy experience knowledge in adaptive neural fuzzy inference system (ANFIS) and the self-learning function in neural network, the strong coupling, variability and uncertainty of the temperature model of coke oven can be solved, and then the ANFIS recognition model is established. In addition, the genetic optimization algorithm is introduced in fuzzy controller, to adjust the fuzzy membership rules in real time to achieve smooth, rapid and accurate control. The Matlab simulation proves that the scheme is feasible and effective. Finally the scheme designed will provide theoretical guidance for optimization research of coke oven vertical flame path temperature control.
出处 《自动化仪表》 CAS 2015年第4期75-78,83,共5页 Process Automation Instrumentation
基金 国家自然科学基金资助项目(编号:61203021)
关键词 焦炉 ANFIS 遗传算法 模型建立 模糊控制 MATLAB仿真 Coke oven ANFIS Genetic algorithms Model-building Fuzzy control Matlab simulation
  • 相关文献

参考文献10

二级参考文献92

共引文献461

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部