期刊文献+

基于显著性与尺度空间的红外弱小目标检测 被引量:20

Infrared dim small target detection based on saliency and scale-space
下载PDF
导出
摘要 针对复杂的天空背景,提出了一种基于显著性与尺度空间的红外弱小目标检测算法。首先通过频域残差法对原始图像进行初步处理,缩小红外弱小目标的待识别目标区域;接着利用Do G算子得到预处理后图像的尺度空间并实行特征点检测,获得最佳尺度图像,再对特征图像进行加权融合;最后通过信息熵分割来实现红外弱小目标的检测。仿真结果表明,本文方法跟文献中所提的优秀算法相比,能有效地检测出红外弱小目标,提升了目标图像的信杂比。同时,能很好地适应不同复杂场景,为红外弱小目标的跟踪应用奠定了基础。 An infrared dim small target detection method based on the saliency and scale-space theory is presented for complex sky background. Firstly,a spectral residual is used to deal with the original image in order to reduce identification area of infrared dim target. Secondly,the difference of Gaussian( Do G) operator is used to obtain scale space of the image after preprocessing,and feature points are detected,which gets an optimal scale image. Then,the feature images are weighted and fused. Finally infrared dim target detection is achieved by the segmentation of information entropy. Simulation results show that,compared with other reference algorithm,the proposed method can detect the infrared dim target more effectively and enhance the SCR of target image. At the same time,the algorithm can effectively detect dim targets in different complex scenes and lay the foundation for an infrared dim target tracking application.
作者 周姣 辛云宏
出处 《激光与红外》 CAS CSCD 北大核心 2015年第4期452-456,共5页 Laser & Infrared
基金 陕西省自然科学基础研究计划工业攻关项目(No.2012K09-09) 2012年度中央高校基本科研业务费专项资金(No.GK201301008)资助
关键词 红外弱小目标 频域残差法 DoG算子 尺度空间 信息熵 infrared dim target spectral residual Do G operator scale-space information entropy
  • 相关文献

参考文献18

  • 1Charlene E C,Jerry S. Optimization of point target track-ing filters [ J ]. IEEE Trans. Aerosp. Electron. Syst. , 2000,36(1) :15 -25.
  • 2J Shaik,K M Iftekharuddin. Detection and tracking of tar-gets in infrared images using Bayesian techniques [ J ].Optics & Laser Technology ,2009 ,41 (6) :832 ~ 842.
  • 3Ali Borji, Laurent Itti. Exploiting local and global patch rari-ties for saliency detection[ J]. IEEE Conference on ComputerVision and Pattern Recognition ,2012 :478 -485.
  • 4Li J,Martin D L, An X J, et al. Visual saliency based onscale-space analysis in the frequency domain [ J ]. IEEETransactions on Pattern Analysis and Machine Inteli-gence,2013,35(4) ;996 - 1010.
  • 5Houssem Chatbri, Keisuke Kameyama. Using scale spacefiltering to make thinning algorithms robust against noisein sketch images f J ]. Pattern Recognition Letters, 2014,42(4) :1 -10.
  • 6Tae-Wuk Bae, Fei Zhang, In-So Kweon. Edge directional2D LMS filter for infrared small target detection[ J]. Infra-red physics & Technology ,2012 ,55 (1) : 137 -145.
  • 7Cattleya Duanggate, Bunyarit Uyyanonvara, Stanislav S. Ob-ject detection with feature stability over scale space [ J ]. J.Vis. Commun. Image R. ,2011,22(4) :345 - 352.
  • 8Chengjun L, Ying W, Zeling S. A small target detectionalgorithm based on multi-scale energy cross [ J ]. ProcIEEE Int Conf Robotics Intell Syst Signal Process,2003 ,2;1191 -1196.
  • 9AC Jalba, M H F Wilkinson,J B T M Roerdink. Shaperepresentation and recognition through morphological cur-vature scale spaces [ J ]. IEEE Transactions on Image Pro-cessing, 2006,15 (2) :331 -341.
  • 10万明,张凤鸣,胡双.基于多步长梯度特征的红外弱小目标检测算法[J].光学学报,2011,31(10):98-103. 被引量:22

二级参考文献22

  • 1过润秋,张颖,林晓春.基于形态滤波的红外小目标检测方法[J].激光与红外,2005,35(6):451-453. 被引量:23
  • 2Rich Edmondson, Mike Rodgers, Michele Banish et al.. Single-frame image processing techniques for low-SNR infrared imagery[C]. SPIE, 2008, 6940: 69402G.
  • 3Mukesh A. Znveri, S. N. Merchant, Uduy B. Desrri. Air-borne approaching target detection and tracking in infrared image sequence [C]. 2004 International Conference on Image Processing, 2004, 10: 1025~1028.
  • 4Tarun Soni, James R. Zeidler, Walter H. Ku. Adaptive whitening filter for small target detection[R]. Naval Command Control and Ocean Surveillance Center, 1992.
  • 5John Lai, Jason J. Ford, Peter O′Shea et al.. A study of morphological pre-processing approaches for track-before-detect dim target detection[C]. Proceedings of the 2008 Australian Conference on Robotics & Automation, 2008, 12: 1361~1370.
  • 6S. Arivazhagan, L. Ganesan. Automatic target detection using wavelet transform[J]. J. Applied Signal Processing, 2004, 2004(17): 2663~2674.
  • 7李俊山.红外图像处理,分析与融合[M]北京:科学出版社,2009.
  • 8Otsu N A. Threshold selection method from gray-level histograms[J].IEEE Transactions on Systems Man and Cybernetics,1979,(01):62-66.
  • 9管志强,陈钱,钱惟贤,胡永生.一种基于算法融合的红外目标跟踪方法[J].光学学报,2008,28(5):860-865. 被引量:22
  • 10徐国保,王骥,赵桂艳,尹怡欣,谢仕义.基于数学形态学的自适应边缘检测新算法[J].计算机应用,2009,29(4):997-999. 被引量:32

共引文献32

同被引文献158

引证文献20

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部