期刊文献+

刀具形状及工艺参数对模具钢NAK80高速切削过程的影响 被引量:2

Effect of tool geometry and process parameters on high-speed cutting process of NAK80 die steel
原文传递
导出
摘要 通过建立等效二维高速切削有限元模型,对影响模具钢NAK80切削过程的因素进行研究。通过Johnson-Cook材料本构方程描述材料特性,切屑的分离采用基于断裂力学的几何—物理分离准则,用修正的库伦摩擦定律表征前刀面与工件的接触状态。对不同刀具前角、切削速度、切削深度下的高速切削过程进行仿真,分析不同参数下切屑形态、切削力与切削温度的变化情况。结果表明,合理的选择刀具前角、切削速度与切削深度,可以优化切屑形态,降低切削力与切削温度,对切削过程的优化具有一定的指导意义。 Based on 2D equivalent finite element model of high-speed cutting, the factors influencing cutting process of NAK80 die steel were investigated. The material properties were described by Johnson-Cook constitutive equation. Chip separation was determined by the geometrical and physical separation criterion based on fracture mechanics. Contact condition between the rake surface and the workpiece was represented by the modified coulomb law. The high-speed cutting process was simulated under different rake angle, cutting speed and cutting depth. Changes of chip morphology, cutting force and cutting temperature under different parameters were analyzed. The results show that reasonable selection of tools rake angle, cutting speed and cutting depth may optimize the chip morphology, reduce the cutting force and cutting temperature. This research has certain guiding significance for the optimization of cutting proeess.
出处 《兵器材料科学与工程》 CAS CSCD 北大核心 2015年第2期5-8,共4页 Ordnance Material Science and Engineering
基金 国家科技重大专项(2012ZX04011021) 浙江省自然科学基金(Y1110708) 宁波市自然科学基金(2013A610152)
关键词 高速切削 有限元仿真 切屑形态 切削力 切削温度 high-speed cutting FE simulation chip morphology cutting force .cutting temperature
  • 相关文献

参考文献10

  • 1Soo S L, Aspinwall D K, Dewes R C. 3D FE modelling of the cutting of Inconel 718 [J]. Journal of Materials Processing Technology, 2004,150( 1 ) : 116-123.
  • 2Ceretti E, Lazzaroni C, Menegardo L, et al. Turning simulations using a three-dimensional FEM code [J]. Journal of Materials Processing Techn01ogy, 2000,98 ( 1 ) : 99-103.
  • 3Mamalis A G, Horvath M, Branis A S, et al. Finite element sim- ulation of chip formation in orthogonal metal cutting[J]. Jour- nal of Materials Processing Technology, 2001,110( 1 ) : 19-27.
  • 4Guo Y B, Yen D W. A FEM study on mechanisms of discontinu- ous chip formation in hard machining[J]. Journal of Materials Processing Technology, 2004,155: 1350-1356.
  • 5Lorentzon J, Jarvstrt N, Josefson B L. Modelling chip forma- tion of alloy 718 [J]. Journal of Materials Processing Technolo- gy, 2009,209 (10) :4645-4653.
  • 6Chen G,Ren C,Yang X,et al. Finite element simulation of high -speed machining of titanium alloy (Ti-6A1-4V) based on duc- tile failure model [J]. The International Journal of Advanced Manufacturing Technology ,2011,56(9/10/11/12) : 1027-1038.
  • 7Maranhao C, Paulo Davim J. Finite element modelling of ma- chining of AISI 316 steel:numerical simulation and experimen- tal validation [J]. Simulation Modelling Practice and Theory, 2010, 18(2) : 139-156.
  • 8Ozel T, Altan T. Process simulation using finite element method -prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling [J]. International Journal of Ma- chine Tools and Manufacture, 2000,40 (5) : 713-738.
  • 9Baker M. Finite element simulation of high-speed cutting forces [J]. Journal of Matenals Processing Technology, 2006, 176 (1):117-126.
  • 10List G, Sutter G, Bouthiche A. Cutting temperature prediction in high speed machining by numerical modelling of chip for- mation and its dependence with crater wear[J]. International Journal of Machine Tools and Manufacture, 2012,54: 1-9.

同被引文献17

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部