期刊文献+

基于声矢量传感器阵列的空速估计算法 被引量:4

Airspeed estimation based on acoustic vector sensor array
下载PDF
导出
摘要 研究了一种新型的空速测量方法。通过引入大气声学中的有效声速概念,建立了稳定气流作用下声矢量传感器阵列的近场输出模型,模型的阵列流形矢量中包含了待估计的空速信息。在此基础上提出了一种基于多重信号分类(multiple signal classification,MUSIC)的空速估计(airspeed estimation,ASE)算法,该算法可用于对空速的高精度估计。为了降低计算复杂度,进一步提出了一种快速的空速估计(fast airspeed estimation,FASE)算法,该算法虽然在ASE的精度上不如MUSIC-ASE算法,但无需谱搜索,具有更强的实时性。最后,对算法的估计性能进行分析,推导了ASE的克拉美-罗界表达式。仿真实验验证了算法的有效性。 A novel airspeed measuring method is proposed. According to the concept of effective sound velocity in the field of atmospheric acoustics, the near-field output model of acoustic vector sensor array is constructed in a stable air flow. Then a multiple signal classification algorithm for airspeed estimation (MUSIC-ASE) is presented, which can be used to estimate the airspeed with a high degree of accuracy. To reduce the computational com- plexity, a fast airspeed estimation (FASE) algorithm is addressed. Though the estimation accuracy is not so high as the MUSIC-ASE algorithm, the FASE method enable to avoid spectral peak search, and must be more stronger than the MUSIC-ASE algorithm in real-time. Finally, the performance of the proposed algorithms is analyzed, and a compact expression for the Cramer-Rao bound on the estimation error of the airspeed is derived. Computer simulations are implemented to verify the efficacy of the proposed algorithms.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第5期1060-1065,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61172126 61203355) 吉林省自然科学基金(20140101073JC)资助课题
关键词 声矢量传感器阵列 多重信号分类 克拉美-罗界 空速估计 阵列信号处理 嵌入式大气数据传感 acoustic vector sensor array multiple signal classification (MUSIC) Cram6r-Rao bound(CRB) airspeed estimation (ASE) array signal processing flush air data sensing
  • 相关文献

参考文献14

  • 1Whitmore S A, Cobleigh B R, Haering E A. Design and calibra- tion of the X-33 flush airdata sensing (FADS) system[R]. Dry- den Flight Research Center Edwards, California: NASA/TM- 1998-206540, 1998.
  • 2Baumann E, Pahle J W, Davis M C. X-43A flush airdata sensing system flight-test results[J]. Journal of Spacecra fl and Rockets, 2010, 47(1): 48-61.
  • 3Ellsworth J C. An analytical explanation for the X-43A flush air data sensing system pressure mismatch between flight and theory[R]. Chicago Illinois.. AIAA 2010- 4964, 2010.
  • 4Nehorai A, Paldi E. Acoustic vector-sensor array processing[J]. IEEE Trans. on Signal Processing, 1994, 42(9) :2481 - 2491.
  • 5Wu Y I, Wong K T, Lau S K. The acoustic vector-sensor's near-field array-manifold[J]. IEEE Trans. on Signal Proces- sing, 2010, 58(7):3946-3951.
  • 6Wu Y I, Wong K T. Acoustic near-field source-localization by two passive anchor-nodes[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48(1) : 159 - 169.
  • 7王立新,陶建武.一种新型的大气数据测量方法[J].计量学报,2011,32(1):44-48. 被引量:11
  • 8陈诚,陶建武.基于声矢量传感器阵列的鲁棒H_∞空气流动速度估计算法[J].航空学报,2013,34(2):361-370. 被引量:13
  • 9Chen C, Tao J W, Zeng B. Estimation of airspeed based on acoustic vector sensor array[C] //Proc, of the 11 th International Conference on Signal Processing, 2012 : 307 - 310.
  • 10Liang J L, Zeng X J, Ji B J, et al. A computational efficient al- gorithm for joint range-DOA-frequency estimation of near-field sources[J]. Digital Signal Processing, 2009,19 (7) : 596 - 611.

二级参考文献26

  • 1孙贵青,李启虎.声矢量传感器研究进展[J].声学学报,2004,29(6):481-490. 被引量:101
  • 2邵笑杰,于盛林,张斌.卡尔曼滤波在嵌入式飞行数据传感系统中的运用[J].测控技术,2005,24(1):70-72. 被引量:2
  • 3张斌,于盛林.嵌入式飞行参数传感系统的神经网络算法[J].航空学报,2006,27(2):294-298. 被引量:16
  • 4Whitmore S A,Cobleigh B R,Haering E A. Design and calibration of the X-33 flush airdata sensing (FADS) system.NASA/TM-1998-206540[R].1998.
  • 5Baumann E,Pahle J W,Davis M C. X-43A flush airdata sensing system flight-test results[J].Journal of Spacecraft and Rockets,2010,(01):48-61.
  • 6Ellsworth J C,Whitmore S A. Simulation of a flush airdata system for transatmospheric vehicles[J].Journal of Spacecraft and Rockets,2008,(04):716-732.doi:10.2514/1.33541.
  • 7Ellsworth J C. An analytical explanation for the X-43A flush air data sensing system pressure mismatch between flight and theory.AIAA-2010-4964[R].2010.
  • 8Weiss S. Comparing three algorithms for modeling flush airdata system.AIAA-2002-0535[R].2002.
  • 9Rohloff T J. Development and evaluation of neural network flush air data sensing systems[M].Los Angles:University of California,1998.
  • 10Zheng C J,Lu Y P,He Z. Improved algorithms for flush airdata sensing system[J].Chinses Journal of Aeronautics,2006,(04):334-339.

共引文献13

同被引文献34

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部