期刊文献+

Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect 被引量:6

Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect
原文传递
导出
摘要 Hydrostatic guideways are used as an alter- native to contact bearings due to high stiffness and high damping in heavy machine tools. To improve the dynamic characteristic of bearing structure, the dynamic modeling of the hydrostatic guidway should be accurately known. This paper presents a "mass-spring-Maxwell" model considering the effects of inertia, squeeze, compressibility and static bearing. To determine the dynamic model coefficients, numerical simulation of different cases between displacement and dynamic force of oil film are performed with fluent code. Simulation results show that hydrostatic guidway can be taken as a linear system when it is subjected to a small oscillation amplitude. Based on a dynamic model and numerical simulation, every dynamic model's parameters are calculated by the Levenberg- Marquardt algorithm. Identification results show that "mass-spring-damper" model is the most appropriate dynamic model of the hydrostatic guidway. This paper provides a reference and preparation for the analysis of the dynamic model of the similar hydrostatic bearings. Hydrostatic guideways are used as an alter- native to contact bearings due to high stiffness and high damping in heavy machine tools. To improve the dynamic characteristic of bearing structure, the dynamic modeling of the hydrostatic guidway should be accurately known. This paper presents a "mass-spring-Maxwell" model considering the effects of inertia, squeeze, compressibility and static bearing. To determine the dynamic model coefficients, numerical simulation of different cases between displacement and dynamic force of oil film are performed with fluent code. Simulation results show that hydrostatic guidway can be taken as a linear system when it is subjected to a small oscillation amplitude. Based on a dynamic model and numerical simulation, every dynamic model's parameters are calculated by the Levenberg- Marquardt algorithm. Identification results show that "mass-spring-damper" model is the most appropriate dynamic model of the hydrostatic guidway. This paper provides a reference and preparation for the analysis of the dynamic model of the similar hydrostatic bearings.
出处 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第1期78-88,共11页 机械工程前沿(英文版)
关键词 hydrostaticdynamic mesh technique spring-damper modelguidway dynamicLevenberg-Marquardt model mass- hydrostaticdynamic mesh technique,spring-damper modelguidway, dynamicLevenberg-Marquardt,model, mass-
  • 相关文献

同被引文献45

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部