期刊文献+

一种用于图像分类的语义增强线性编码方法 被引量:3

A Semantic Enhanced Linear Coding for Image Classification
下载PDF
导出
摘要 针对传统编码模型中存在的编码歧义性问题,该文提出一种考虑特征上下文的语义增强线性编码方法。首先,通过学习局部邻域中特征共生关系矩阵来表示上下文信息。然后,在编码过程中同时引入学习而得的上下文信息与特征上下文匹配权重得到语义增强编码模型。由于上下文信息与上下文匹配权重的功能,使得此编码方法不仅丰富了编码的语义信息,还能够有效避免噪声带来的影响。在3个基准数据集(Scene15,Caltech101以及Caltech256)上充分的实验验证了该方法的有效性。 Considering the ambiguity problem in the traditional feature coding model, a feature context-aware semantic enhanced linear coding method is proposed. At first, the context information is represented by the concurrence matrix learnt from local area of the features. Then, the context information and a context matching weight are introduced into the coding model to form a new semantic enhanced coding model. Owning to the functions of context information and the context matching weight, this model not only enriches the semantic meaning of coding, but also efficiently avoids the affects of noise. Experiments on the baselines(Scene15, Caltech101, and Caltech256) demonstrate the effectiveness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第4期791-797,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61175006) 博士学科点专项科研基金(20134307110029)资助课题
关键词 图像分类 特征编码 上下文约束 歧义性 Image classification Feature coding Context constraint Ambiguity
  • 相关文献

参考文献22

  • 1Espinace P, Kollar T, Roy N, et al . Indoor scene recognition by a mobile robot through adaptive object detection[J]. Robotics and Autonomous Systems, 2013, 61(9): 932-947.
  • 2蒋飞云,孙锐,张旭东,李超.基于二次表示的空间目标图像分类[J].电子与信息学报,2013,35(5):1247-1251. 被引量:3
  • 3Zhang Y, Zheng X W, Liu G, et al. Semi-supervised manifold learning based multigraph fusion for high-resolution remote sensing image classiffication[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 464-468.
  • 4Zhang Y, Zhang B, Coenen F, et al . One-class kernel subspace ensemble for medical image classification[J]. EURASIPJournal on Advances in Signal Processing, 2014, (17): 1-13.
  • 5Csurka G, Dance C, Fan L, et al . Visual categorization with bags of keypoints[C]. Proceedings of the European Conference on Computer Vision on Statistical Learning in Computer Vision, Prague, Czech Republic, 2004: 59-74.
  • 6Huang Y, Wu Z, Wang L, et al. Feature coding in image classiffication: a comprehensive study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 493-506.
  • 7Lazebnik S, Schmid C, and PonceJ. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169-2178.
  • 8GernertJ C, GeusebroekJ, Veenman CJ, et al. Kernel codebooks for scene categorization[C]. Proceedings of the European Conference on Computer Vision, Marseille, France, 2008(5304): 696-709.
  • 9Liu L, Wang L, and Liu X. In defense of soft-assignment coding[C]. Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 2011: 2486-2493.
  • 10YangJ, Yu K, Gong Y, et at. Linear spatial pyramid matching using sparse coding for image classification[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, 2009: 1794-180l.

二级参考文献2

共引文献2

同被引文献4

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部