期刊文献+

基于等式约束卡尔曼的双MIMU行人导航方案 被引量:9

Dual MIMU Pedestrian Navigation Scheme Based on Equality Constraint Kalman Filtering
下载PDF
导出
摘要 基于微机电系统(MEMS)的自主式行人导航系统通常安装在步行者的足部,利用零速校正来提高系统的定位精度。针对零速校正航向不精确问题,提出了基于等式约束卡尔曼滤波的双微型惯性测量组合(MIMU)行人导航方案。根据所设计的双MIMU系统在物理空间的相对位置关系,构造二阶非线性等式约束方程,并详述了等式约束卡尔曼滤波的解算过程。结合MEMS真实试验进行研究,对脚部负载双MIMU系统离线数据处理。根据试验结果验证了相比较于单MIMU行人导航方案,基于等式约束的双MIMU行人导航系统具有更高的定位精度。 Independent pedestrian navigation system which increases the accuracy of positioning through zero velocity updates(ZUPT)based on MEMS technology is usually foot-mounted.A dual miniature inertial measurement unit(MIMU)pedestrian navigation scenario based on equality constraint Kalman filtering is proposed,which focus on solving the problem that the heading can′t be precisely estimated during the procedure of ZUPT.Achieve nonlinear second order equality constraint with reference to relative position of two MIMU systems and work of data fusion applying a Kalman filter-type estimator in the presence of such constraint is reviewed.The considered scheme is researched with data in real MEMS experiment of foot-mounted MIMU,then off-line process the data of dual footmounted MIMU.According to the test results which is compared to a single MIMU pedestrian navigation scheme,equality constrained dual MIMU pedestrian navigation system has higher positioning accuracy.
出处 《压电与声光》 CAS CSCD 北大核心 2015年第2期237-241,共5页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(61203225)
关键词 自主行人导航 微机电系统(MEMS) 双MIMU 等式约束 卡尔曼滤波器 independent pedestrian navigation MEMS dual MIMU equality constraint Kalman filter-type estimator
  • 相关文献

参考文献13

  • 1RANTAKOKKO J, RYDELL J, STROMBACK P, et al. Accurate and reliable soldier and first responder in- door positioning: multisensor systems and cooperative localization [J]. Wireless Communications, IEEE, 2011,18(2) : 10-18.
  • 2SKOG I, HANDEL P,NILSSON J O,et al. Zero-veloc- ity detection-an algorithm evaluation [J]. Biomedical Engineering, 2010,57(11) :2657-2666.
  • 3NILSSON J O, SKOG I, HANDEL P. Performance characterisation of foot-mounted ZUPT-aided INSs and other related systems[C]//Stockholm, Sweden: Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on, IEEE,2010:1-7.
  • 4KEMPE V. Inertial MEMS[M]. England: Cambridge University Press, 2011.
  • 5CHEN W C,GAO G W,WANG J,et al. The study of the MEMS gyro zero drift signal based on the adaptive Kalman filter[J]. Key Engineering Materials, 2012, 500(1) : 635-639.
  • 6詹建平,黄席樾,沈志熙,杜长海.基于均值漂移和卡尔曼滤波的目标跟踪方法[J].重庆理工大学学报(自然科学),2010,24(3):76-80. 被引量:9
  • 7PORRILL J. Optimal combination and constraints forgeometrical sensor data[J]. INT J Robot Res, 1988, 7(6) :946-959.
  • 8SIMON D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET Con- trol Theory and Applications,2007,55(6) :2774-2784.
  • 9YANG C, BLASCH E Kalman filtering with nonlinear state constraints[J]. Aerospace and Electronic Sys- tems, 2009,45(1) :70-84.
  • 10谢建,朱建军.不等式约束卡尔曼滤波的解算及其统计性质[J].测绘与空间地理信息,2009,32(2):28-31. 被引量:5

二级参考文献12

  • 1窦建军,文俊,刘重庆.基于颜色直方图的图像检索技术[J].红外与激光工程,2005,34(1):84-88. 被引量:39
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 4Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Kernel-based object tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564 -577.
  • 5Huiyu Zhou, Yuan Yuan, Chunmei Shi. Object tracking using SIFT features and mean shift [ J ]. Computer Vision and Understanding, 2009,113 : 345 - 352.
  • 6Shu-Xiao Li, Hong-Xing Chang, Cheng-Fei Zhu. Adaptive Pyramid mean shift for global real-time visual tracking [ J ]. Computer Vision and Understanding, 2009, 28 (3) : 424 - 437.
  • 7Fashing M, Tomasi C. Mean shift is a bound optimization [ J ]. IEEE Trans. Pattern Anal. Mach. Intell, 2005,27(3) : 471 - 474.
  • 8Na Lu, Zuren Feng. Mathematical model of blob matching and modified Bhattacharyya coefficient [ J ]. Computer Vision and Understanding, 2008, 26(10) : 1421 - 1434.
  • 9Noushath S, Hemantha K G, Shivakumara P. Diagonal Fisher linear discriminant analysis for efficient face recognition [ J ]. Neurocomputing, 2006, 69 ( 13 - 15 ) : 1711 - 1716.
  • 10Comaniciu D , Rarnesh V, Meer P, Kernel-based object tracking [ J ]. IEEE Transactions . on Pattern Analysis and Machine Intelligence , 2003,25 (2) : 564 - 577.

共引文献12

同被引文献59

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部