期刊文献+

基于立体视觉分析的显著性区域检测算法 被引量:10

Saliency region detection method based on stereo vision analysis
下载PDF
导出
摘要 针对传统单目视觉显著性模型存在细节丢失,不适用于复杂场景等问题,提出一种基于立体视觉分析的显著性区域检测算法。首先,采用基于图的分割方法将图像分割成不同区域,根据颜色和视差以及空间相干性计算颜色复杂度和视差复杂度。其次,对两者进行显著性聚合,计算像素对比度从而得到区域对比度。最后,引用视差信息计算局部对比度后,进行融合归一化,获得显著图。该算法适用于背景纹理复杂的立体图像显著性区域检测,检测的显著图细节突出,边缘锐利。实验结果表明,该算法优于其他显著性算法,符合人类视觉机制,在立体图像数据集上获得了75%正确率和88%召回率。 The traditional saliency models of monocular vision have some deficiencies , such as the loss of detail and low performance in complex situation .Saliency region detection method based on stereo vision analysis was pro-posed.Firstly, the image was divided into different regions by the graph-based segmentation method, and color complexity and disparity complexity were completed according to color , disparity and spatial coherence.Secondly, pixel contrast was calculated to get the regional contrast by saliency aggregation .Finally, the local contrast was cal-culated on the basis of disparity information and all methods were aggregated and normalized to get saliency map . The algorithm is applied for saliency region detection of stereo images which have complex texture background .The saliency maps have outstanding detail and sharp edge .The experimental result shows that the proposed method is superior to other algorithms significantly and is consistent with human visual perception and achieves 75%precision and 88% recall ratio on the stereo image data set.
出处 《电子测量与仪器学报》 CSCD 北大核心 2015年第3期399-407,共9页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61175033) 中央高校基本科研业务费专项(WK2100100009 2012HGCX0001)资助项目
关键词 颜色 视差 立体视觉 显著性聚合 区域检测 显著图 color disparity stereo vision saliency aggregation region detection saliency map
  • 相关文献

参考文献20

  • 1LIU C, YUEN J, TORRALBA A. Sift flow: dense correspondence across scenes and its applications [ C ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2011,33 (5) :978-994.
  • 2WISMEIJER D A, ERKELENS C J, EE R, et al. Depth cue combination in spontaneous eye movement [J]. Journal of Vision, 2010, 10 (6) :1-15.
  • 3余时伟,黄廷祝,刘晓云,陈武凡.显著图引导下基于偏互信息的医学图像配准[J].仪器仪表学报,2013,34(6):1218-1225. 被引量:10
  • 4AVIDAN S, SHAMIR A. Seam carving for content-a- ware image resizing[ C ]. ACM Transactions on graph- ics (TOG), 2007, 26(3): 10.
  • 5ROTHER C, OLMOGOROV V K, BLAKE A. "Grab- cut"-Interactive foreground extraction using iterated graph cuts [ C ]. ACM Transactions on Graph, 2004, 23(3) : 309- 314.
  • 6HAREL J, KOCH C, PERONA P. Graph-based visual saliency [ C ]. IEEE Preceedings of NIPS, 2006: 545 -552.
  • 7POGGIO G, POGGIO T. The analysis of stereopsis [J]. Annual Review of Neuroscience, 1984,7 ( 1 ) : 379-412.
  • 8ZHAI Y, SHAH M. Visual attention detection in video sequences using spatiotemporal cues [ C ]. IEEE Pre- ceedings of ACM Muhimedia, 2006:815-824.
  • 9HOFFMAN D M, GIRSHICK A R, AKELEY K, et al. Vergence accomodation conflicts hinder visual per- formance and cause visual fatigue [ J ]. Journal of Vi- sion, 2008, 8 (3) : 1-30.
  • 10MAKI A, NORDLUND P, EKLUNDH J O. A compu- tational model of depth-based attention[J]. IEEE Con- ference on Pattern Recognition, 1996: 734-739.

二级参考文献85

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 3LUCCHESEYZ L, MITRAY S K. Color image segmenta- tion a state of the art survey [J]. Image Processing Vision and Pattern Recognition, 2001, 67(2): 207-221.
  • 4VINCENT L, SOILLE P. Watersheds in digital spaces: all efficient algorithm based on immersion simulations [J]. IEEE Transaction on Pattern Analysis and Machine Intel- ligence, 1991, 13(6): 583-598.
  • 5GONZALEZ R C, WOODS R E. Digital Image Process- ing [M]. 2nd ed. Editora: Prentice Hall, 2002.
  • 6JR R H, FLORES C F, BARRERA J, et al. Color image gra- dients for morphological segmentation [C]. IEEE Proceeding of SIBGRAPI, 2000, Gramado, Brazil, 2000: 316-322.
  • 7O'CALLAGHAN R J, BULL D R. Combined morphologi- cal spectral unsupervised image segmentation [J]. IEEE Transactions on Image Processing, 2005, 14(1): 49-62.
  • 8GAO H, SIU W C, HOU C H .Improved techniques for automatic image segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(12): 1273-1280.
  • 9[美]冈萨雷斯.数字图像处理[M].阮秋琦译.2版.北京:电子工业出版社,2007.8.
  • 10DEMPSTER A, LAIRD N, RUBIN D. Maximum likeli- hood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society Series B: Meth- odological, 1977, 39(1): 1-38.

共引文献68

同被引文献106

  • 1汪国有,张磊,王晨.复杂背景下序贯显著性特征海面目标检测算法[J].华中科技大学学报(自然科学版),2006,34(10):28-30. 被引量:5
  • 2HAN J, NGAN K N, LI M, et al. Unsupervised extraction of visual attention objects in color images [J ]. IEEE Trans- actions on Circuits & Systems for Video Technology, 2006,16(1 ) :141-145.
  • 3KO B C,NAM J Y. Object-of-interest image segmentation based on human attention and semantic region clustering. [J]. Journal of the Optical Society of America A, 2006,23 (10) : 2462-70.
  • 4RUTISHAUSERU,WALTHERD,KOCHC,et al.ls bottom-up attention useful for object recognition? [C]//IEEE Inter- national Conference on Computer Vision and Pattern Recognition ( CVPR 2004 ), 2004 : 37- 44.
  • 5CHRISTOPOULOS B C,SKODRAS A,EBRAHIMI T. The JPEG2000 still image coding:an overview [C]//IEEE Transactions on Consumer Electronics, 2012,46 (4) : 1103-1127.
  • 6REYNOLDS J H,DESIMONE R. Interacting Roles of Attention and Visual Salience in V4[J]. Neuron,2003,37(5) :853-63.
  • 7CHEN T,CHENG M M,TAN P,et al. Sketch2Photo:intemet image montage[J]. Acm Transactions on Graphics, 2009,28(5) : 89-97.
  • 8TEUBER H L. Physiological psychology [J ]. Annual Review of Psychology, 1955,6 ( 1 ) : 267-296.
  • 9HEMAMI S, ESTRADA F, SUSSTRUNK S. Frequency-tuned salient region detection [C]// IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009),2009:1597-1604.
  • 10TREISMAN A M,GELADE G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980,12(1 ) :97-136.

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部