摘要
High-Curie-temperature (Tc) lead-free Y-doped 90 mol%BaTiO3-1O mol%(Bi0.5Na0.5 ) TiO3 ceramic with positive temperature coefficient of resistivity (PTCR) is prepared by the conventional solid state reaction in nitrogen atmosphere. The PTCR ceramic exhibits a room-temperature resistivity (p25) of ~500Ω.cm and a high PTCR effect (maximum resistivity (ρmax)/minimum resistivity (ρmin)) of ~4.5 orders of magnitude. A capacitance- voltage approach is first employed to calculate the potential barrier ( Ф ) of the grain boundary of PTCR ceramic above Tc. It is found that the potential barrier changes from 0.17 to 0.77eV as the temperature increases from 180 to 220℃, which is very close to the predictions of the Heywang-Jonker model, suggesting that the capacitance-voltage method is valid to estimate the potential barrier of PTCR thermistor ceramics.
High-Curie-temperature (Tc) lead-free Y-doped 90 mol%BaTiO3-1O mol%(Bi0.5Na0.5 ) TiO3 ceramic with positive temperature coefficient of resistivity (PTCR) is prepared by the conventional solid state reaction in nitrogen atmosphere. The PTCR ceramic exhibits a room-temperature resistivity (p25) of ~500Ω.cm and a high PTCR effect (maximum resistivity (ρmax)/minimum resistivity (ρmin)) of ~4.5 orders of magnitude. A capacitance- voltage approach is first employed to calculate the potential barrier ( Ф ) of the grain boundary of PTCR ceramic above Tc. It is found that the potential barrier changes from 0.17 to 0.77eV as the temperature increases from 180 to 220℃, which is very close to the predictions of the Heywang-Jonker model, suggesting that the capacitance-voltage method is valid to estimate the potential barrier of PTCR thermistor ceramics.
基金
Supported by the Special Foundation for Scientists of Guizhou Province under Grant Nos KY[2012]102 and TZJF-2011-10
the Foundation of Key Laboratory of Inorganic Function Material and Device,the Chinese Academy of Sciences under Grant No KLIFMD2012-02
the National Natural Science Foundation of China under Grant No 51462030