期刊文献+

融合MCMC方法的差分进化算法在水文模型参数优选中的应用 被引量:2

Application of differential evolution algorithm combined with Markov Chain Monte Carlo in parameter optimization of hydrologic model
下载PDF
导出
摘要 传统差分进化算法在优选水文模型参数时容易出现"早熟收敛"问题,基于马尔可夫链蒙特卡罗方法的差分进化算法——DREAM算法,对嘉陵江流域降雨径流模型的参数优选问题进行了分析。结果发现,DREAM算法融合了自适应Metropolis方法的优点,能有效克服"早熟收敛"问题,适用于推求先验信息较少的复杂水文模型参数后验分布。 Premature convergence problem exists in the parameter optimization of hydrological model using the traditional differential evolution.In this paper,differential evolution adaptive metropolis algorithm(DREAM)was proposed,which combines the advantages of differential evolution algorithm and Markov Chain Monte Carlo(MCMC)sampler,and applied in the parameter optimization of CMD-3PAR hydrologic model in the Jialing River Basin.The results showed that DREAM has the advantages of self-adaptive Metropolis method,can effectively overcome the problem of premature convergence,and is capable to infer the posterior distribution of model parameters which is lack of prior information.
出处 《南水北调与水利科技》 CAS CSCD 北大核心 2015年第2期202-205,共4页 South-to-North Water Transfers and Water Science & Technology
基金 国家自然科学基金(50809058)
关键词 差分进化算法 MCMC方法 参数优选 DREAM算法 降雨径流模型 differential evolution algorithm Markov Chain Monte Carlo method parameter optimization Differential Evolution Adaptive Metropolis rainfall-runoff model
  • 相关文献

参考文献12

  • 1Storn R,Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces [R]. International Computer Science Institute, 1995.
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3孙成富,张亚红,陈剑洪,陈礼青.基于高斯扰动和免疫搜索策略的改进差分进化算法[J].南京大学学报(自然科学版),2013,49(2):202-209. 被引量:5
  • 4Kaelo P,Ali M M. A numerical study of some modified differ- ential evolution algorithms[J]. European Journal of Operational Research, 2006,169(3) : 1176-1184.
  • 5Liu Junhong, Lampinen J. A Fuzzy Adaptive Differential Evolu tion Algorithm[J]. Soft Computing: A Fusion of Foundations, Methodologies and Applications, 2005,9 (6) : 48-462.
  • 6Ter Braak C J F, Vrugt J A. Differential Evolution Markov Chain with snooker updater and fewer chains[J]. Statistics and Computing. 2008,18(4) :435-446.
  • 7Vrugt J A, C J F ter Braak, C G H Diks, et al. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling[J]. Int. J. Nonlinear Sci. Numer. Simul:
  • 8Vrugt J A, C F F ter Braak, H V Gupta, et al. Equifinality of formal(DREAM) and informal(GLUE) Bayesian approaches in hydrologic modeling [ J]. Stochastic Environ. Res. Risk As sess. , 2008.
  • 9Evans J P,Jakeman A J. Development of a simple, Catchment- scale, rainfall-evapotranspiration-runoff model [J]. Environ- mental Modelling Software. 1998,13:385-393.
  • 10Wagener T,Lees M J. Rainfall-Runoff Modelling Toolbox us- er manual[J]. Department of Civil and Environmental Engi- neering, Imperial College London, UK. 2001.

二级参考文献91

共引文献294

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部