期刊文献+

基于小波包神经网络的岩巷掘进机动载荷识别方法 被引量:7

Dynamic Load Identification Method of Rock Roadheader Based on Wavelet Packet and Neural Network
原文传递
导出
摘要 针对岩巷掘进机工作时负载多变,动载荷实时识别难度大等问题,提出了一种基于小波包特征能量的神经网络动载荷识别新方法。实时采集截割机构的振动信号、截割电动机的电流及液压缸压力信号,应用小波包分解得到相应信号的特征量,并将其作为神经网络的输入样本,训练神经网络并对网络进行测试。结果表明,动载荷实时识别准确率可达0.93,该识别方法能够满足动载荷实时识别系统的要求。 In order to solve the problems in rock road-header such as changing loads, difficult dynamic load real-time identification, a recognition method based on wavelet packet and neural network was proposed. The vibration signals, the current and hydraulic cylinder pressure signals were collected in real-time. The feature vectors of the corresponding signals, which were chosen as input values for the neural network, were gained through wavelet packets decomposition. It has been shown by experiments that the accuracy rate of dynamic load real-time identification is up to 0.93 and the identification method can meet the requirement of dynamic load real-time identification system.
出处 《煤矿机械》 2015年第3期238-241,共4页 Coal Mine Machinery
基金 国家863计划资源环境技术领域重大项目(2012AA06A405) 高等学校博士学科点博导类专项科研基金(20111402110010)
关键词 岩巷掘进机 小波包 神经网络 动载荷识别 rock roadheader wavelet packet neural network dynamic loading identification
  • 相关文献

参考文献7

二级参考文献44

共引文献124

同被引文献89

引证文献7

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部