期刊文献+

不完备多粒度序信息系统的粗糙近似 被引量:11

Rough approximations in incomplete multi-granular ordered information systems
下载PDF
导出
摘要 粒计算是知识表示和数据挖掘的一个重要方法.它模拟人类思考模式,以粒为基本计算单位,以处理大规模复杂数据和信息等建立有效的计算模型为目标.针对具有多粒度标记的不完备序信息系统的知识获取问题,首先介绍了不完备多粒度序信息系统的概念,并在不完备多粒度序信息系统中定义了优势关系,同时给出了由优势关系导出的优势类,并进一步定义了基于优势关系的集合的序下近似与序上近似的概念,并讨论了它们性质. An important task of knowledge discovery is to establish relations among granules such as classes,clusters,sets,groups,concepts,etc.Granular computing(GrC)is a basic issue in knowledge representation and data mining.It imitates human being's thinking and its objective is to establish effective computation models and to seek for an approximation scheme for dealing with large scale complex data and information.A granule is a primitive notion in GrC which is a clump of objects(points)drawn together by the criteria of indistinguishability,similarity or functionality.It may be interpreted as one of the numerous small particles forming a larger unit.The set of granules provides a representation of the unit with respect to a particular level of granularity.The information granulation is a process of constructing information granules,which granulates a universe of discourse into a family of disjoint or overlapping granules.Rough set theory is one of the most advanced approaches that popularize GrC.Most applications based on rough set theory belong to the attribute-value representation model,i.e.information systems.The Pawlak's rough set model is mainly concerned with the approximation of sets described by a single binary relation on the universe of discourse.Due to the rampant existence of multi-granular information systems with missing values and ordered attributes,the purpose of this study is to discuss representation of information granules and rough approximations of concepts in incomplete multi-granular ordered information systems.The concept of incomplete multi-granular ordered in-formation systems is introduced firstly.In an incomplete multi-granular ordered information system,data with missing values are represented by different scales at different levels of granulations having agranular information transformation from a finer to a coarser ordered attribute domain.Dominance relations on the universe of discourse from an incomplete multi-granular ordered information system are then defined.Dominated labeled classes determined by dominance relations are further constructed.Finally,ordered lower and ordered upper approximations based on dominance relations are explored.Properties of approximations with different levels of granulations are further examined.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期361-367,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61272021 61075120 11071284 61173181) 浙江省自然科学基金重点项目(LZ12F03002)
关键词 粗糙集 信息系统 粒计算 序信息系统 rough sets information systems granular computing ordered information systems
  • 相关文献

参考文献26

  • 1Wu W Z, Leung Y. Theory and applications of granular labeled partitions in multi-scale decision tables. Information Sciences, 2011, 181(18): 3878-3897.
  • 2Zadeh L A. Fuzzy sets and information granularity. In: Gupta N, Ragade R, Yager R. Advances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland, 1979: 3-18.
  • 3Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 1997, 19: 111-127.
  • 4Bargrela A, Pedrycz W. Granular computing: An introduction. Boston: Kluwer Academic Publishers, 2002, 480.
  • 5Bargrela A, Pedrycz W. Toward a theory of granular computing for human-centered information processing. IEEE Transactions on Fuzzy Systems, 2008, 16: 320-330.
  • 6Hu Q H, Liu J F, Yu D R. Mixed feature selection based on granulation and approximation. Knowledge-Based Systems, 2008, 21: 294-304.
  • 7Qian Y H, Liang J Y, Dang C Y. Knowledge structure, knowledge granulation and knowledge distance in a knowledge base. International Journal of Approximate Reasoning, 2009, 50: 174-188.
  • 8Inuiguchi M, Hirano S, Tsumoto S. Rough set theory and granular computing. Heidelberg: Springer, 2002, 315.
  • 9Lin T Y, Yao Y Y, Zadeh L A. Data mining, rough sets and granular computing. Heidelberg: Physica-Verlag, 2002, 546.
  • 10Yao Y Y. Stratified rough sets and granular computing. In: Dave R N, Sudkamp T. In: The 18th International Conference of the North American Fuzzy Information Processing Society. New York: IEEE Press, 1999: 800-804.

二级参考文献91

共引文献251

同被引文献69

  • 1韩德志,吴帅,毕坤.一种在云计算下的细粒度数据访问控制算法[J].华中科技大学学报(自然科学版),2012,40(S1):245-248. 被引量:2
  • 2沈海波,洪帆.访问控制模型研究综述[J].计算机应用研究,2005,22(6):9-11. 被引量:87
  • 3李龙星,运士伟,杨炳儒.粗糙集概念与运算的布尔矩阵表示[J].计算机工程,2005,31(14):16-17. 被引量:20
  • 4杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 5Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982,11 (5)~ 341--356.
  • 6Lingras P J, Yao Y Y. Data mining using extensions of the rough set model. Journal of the American Society for Information Science, 1998, 49(5) :415--422.
  • 7Swiniarskia R W, Skowronb A. Rough set methods in feature selection and recognition. Pattern Recognition Letters, 2003, 24 (6). 833--849.
  • 8Hu X, Cercone N. Learning in relational databases: A rough set approach. International Journal of Computational Intelligence, 1995, 11(2) :323--338.
  • 9Wang G Y, Ma X A, Yu H. Monotonic uncertainty measures for attribute reduction in probabilistic rough set model. International Journal of Approximate Reasoning, 2015, 59. 41--67.
  • 10Mi J S, Wu W Z, Zhang W X. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences, 2004, 159:255--272.

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部