期刊文献+

四重正交对称多小波的设计 被引量:1

Design of the Symmetric--Orthogonal Multiwavelets with Multiplicity 4
下载PDF
导出
摘要 探讨一类重数为4的正交对称多小波的设计,对于任意长度为2N的对称-反对称正交多小波,运用所给的构造算法可得到长度为(2N+1)的对称-反对称正交多小波,反之亦然。 Wavelet analysis is a kind of time-frequency analysis method, which, in both time and frequency domain, has the ability of denoting local signal characteristics, and as a result, has the irreplaceable role in processing the non-stationary signal. In order to better solve practical problems encountered in many fields, the construction of the excellent properties multiwavelets is important. This paper discusses the design of symmetric--orthogonal multiwavelets with multiplicity 4. For any given symmetric- antisymmetric orthogonal multiwavelets with length-2N, a symmetric-antisymmetric orthogonal multiwavelet with length-( 2N + 1 ) can be constructed by using the algorithm given in this paper and vice verse.
作者 吕卫平 马奕
机构地区 龙岩学院
出处 《龙岩学院学报》 2015年第2期8-12,共5页 Journal of Longyan University
基金 福建省教育厅B类项目(JB12212) 龙岩学院校级第三批教改项目(2014JY30)
关键词 多小波 正交性 对称-反对称 重数 muhiwavelets orthogonal symmetric-antisymmetric muhiplicity
  • 相关文献

参考文献10

  • 1Daubechies I. Ten Lectures on Wavelets[M] ; Philadelphia, SIAM, 1992.
  • 2Goodman TNT, Lee S L. Wavelets in Wandering Suvspaces [ J ] . Trans Amer Math Soc, 1993,338 ; 639—654.
  • 3Jiang Q. Orthogonal Multiwavelets with Optimum Time—Frequency Resolution [ J]. IEEE, Trans, Sign, Proc, 1998,46(4)..830-844.
  • 4Shen L, Tan H H. Some Properties of Symmetric—Antisymmetric Orthonormal Muldtiwavelers [ J ]. IEEE, Trans,Sign, Proc, 2000,48(7) :2161—2163.
  • 5程正兴,杨守志,张玲玲.多小波理论的发展与研究[J].工程数学学报,2001,18(F12):1-16. 被引量:30
  • 6费佩燕,郭宝龙.基于多小波的图像去噪技术研究[J].中国图象图形学报(A辑),2005,10(1):107-112. 被引量:17
  • 7秦树人,徐铭陶,杨昌棋,陈志奎.信号处理中的小波分析[J].重庆大学学报(自然科学版),1996,19(3):35-43. 被引量:11
  • 8杜建卫,王超峰.小波分析方法在金融股票数据预测中的应用[J].数学的实践与认识,2008,38(7):68-75. 被引量:19
  • 9Goodman TNT, Lee S L. Wavelets of Multiplicity [ J]. Trans Amer Math Soc, 1994(342) : 307-324.
  • 10Chui C K,Lian J. A Study of Orthonomal Multiwavelets[ J]. Applied Numer Math, 1996(3) :273-298.

二级参考文献13

  • 1霍菲,张庶萍.小波分析及其在金融、经济领域的应用[J].河北建筑工程学院学报,2001(4):110-112. 被引量:6
  • 2郭宝龙,郭雷.用扩散和集中神经网络区分图形与背景[J].科学通报,1994,39(19):1805-1808. 被引量:5
  • 3Percival等著.Wavelet Methods for Times Series Analysis[M].机械工业出版社,2004,5.
  • 4Geronimo J, Hardin D P, Massopust P. Fractal functions and wavelet expansions based on several scaling functions [ J ]. Journal of Approximation Theory, 1994,75 (4) :373 - 401.
  • 5Strela V, Heller P N, Strang G, et al. The application of multiwavelet filterbanks to image processing [ J ]. IEEE Transactions Image Processing, 1999,8 (4) : 548 - 563.
  • 6Xia X G, Geronimo J S, Hardin D P, et al. Design of prefilters for discrete muhiwavelet transforms [ J ]. IEEE Transactions Signal Processing, 1996,44( 1 ) :25 -35.
  • 7Xia X G. A new prefiher design for discrete multiwavelet transforms[J]. IEEE Transactions Signal processing, 1998,46(6):1558 -1570.
  • 8Mallat S, Hwang Wen Liang. Singularity Detection and Processing with Wavelets [ J ]. IEEE Transactions on Information Theory, 1992,38(2) :617 -643.
  • 9Donoho D L. De-noising via soft-thresholding[J]. IEEE Transactions on Information Theory, 1992,41(3) : 613 -627.
  • 10徐铭陶,重庆大学学报,1996年,19卷,2期,1页

共引文献70

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部