期刊文献+

基于Impala的大数据查询分析计算性能研究 被引量:12

Research on performance of big data computing and query processing based on Impala
下载PDF
导出
摘要 分析了Cloudera公司推出的Impala实时查询引擎原理与架构,并深入比较Impala与传统MapReduce的性能与特点,针对Impala进行复杂大数据处理方面的不足,提出了MapReduce与Impala结合的大数据处理方法,通过使用MapReduce对Impala的输入数据进行预处理,利用MapReduce在复杂作业处理方面的长处弥补了Impala在这方面的不足。最后对电信手机上网日志进行大数据查询和分析计算实验,实验结果表明,在大数据查询性能方面,基于MapReduce与Impala结合的大数据处理速度比传统MapReduce快了一倍。特别地,在迭代查询实验中,基于MapReduce与Impala结合的处理方法超过传统MapReduce方法八倍以上。基于MapReduce与Impala结合的处理方法在单次查询中的效率仍然高于传统MapReduce;而在迭代查询中,MapReduce与Impala结合的处理方法远远地超过了MapReduce。因此,MapReduce与Impala结合的处理方法能够发挥Impala和Hadoop各自的优点,让处理效率远超传统MapReduce,对于复杂的大数据处理的能力高于Impala。 First of all,this paper analyzed the elements and architecture of Impala the big data real-time query engine released by Cloudera recently. Then it compared the feature and efficiency between traditional MapReduce and Impala. Based on the comparison,it discovered the disadvantages of Impala. After that it proposed a method to process data with both MapReduce and Impala: using MapReduce to preprocess incoming data of Impala. This method utilized the flexibility of MapReduce to cover the disadvantages of Impala. Comparative experiments on the access log generated by China telecom's daily wap traffice have proved that Impala is evidently faster than traditional MapReduce and the combination of MapReduce and Impala will run twice faster than the traditional MapReduce. Especially in iterative analysis,the combination of MapReduce and Impala shows its overwhelming superiority towards traditional MapReduce. Hence,it is concluded that the combination of MapReduce and Impala can adopt the advantage of each other. It outperform traditional MapReduce on Performance and Impala on flexibility on complex data processing.
出处 《计算机应用研究》 CSCD 北大核心 2015年第5期1330-1334,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61070015) 广东省自然科学基金资助项目(S2011010001754 S2012030006242) 广东省科技计划资助项目(2012B010100030)
关键词 大数据 HADOOP MAPREDUCE IMPALA 计算性能 查询分析 big data Hadoop MapReduce Impala calculated performance query analysis
  • 相关文献

参考文献13

  • 1颜开. 新一代数据分析利器:Google Dremel原理分析[R].2012.
  • 2MELNIK S,GUBAREV A,LONG Jing-jing,et al. Dremel:interactive analysis of Web-scale datasets[J].Proceedings of the VLDB Endowment,2010,3(1):330-339.
  • 3Cloudera Company. CDH4和Impala文档[EB/OL].http://www. cloudera. com/content/support /en/documentation. html.
  • 4Cloudera Impala:Real-time queries in apache Hadoop,for real[EB/OL].(2012-10). http://blog. cloudera. com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/.
  • 5Apache Hadoop[EB/OL].http://hadoop. apache. org.
  • 6Apache Hive[EB/OL].http://hive. apache. org/.
  • 7DEAN J,GHEMAWAT S. MapReduce:simplified data processing on large clusters[C] //Proc of the 6th Symposium on Operating Systems Design and Implementation. 2004.
  • 8DITTRICH J,RICHTER S,SCHUH S. Efficient OR Hadoop:why not both?[J].Datenbank Spektrum,2013,13(1):17-22.
  • 9HDFS architecture guide[EB/OL].(2013-08-04). http:// hadoop. apache. org/docs/ r1. 2. 1/hdfs_de-sign. html.
  • 10Intel. Optimizing Hadoop deployments[EB/OL].(2010-05-23). http://communities. intel. com/ servlet/JiveServletdownloadBody/5645-102-1-8759.

同被引文献111

  • 1蒋春平,黄煜骁,周晓君.基于Kudu的实时业务应用场景解决方案[J].电信科学,2020,36(S01):268-275. 被引量:3
  • 2苟素洁.浅谈信息系统统一身份认证和单点登录[J].工业计量,2012,22(S2):61-63. 被引量:2
  • 3郭朝鹏,王智,韩峰,张一川,宋杰.HaoLap:基于Hadoop的海量数据OLAP系统[J].计算机研究与发展,2013,50(S1):378-383. 被引量:5
  • 4张钢.GSM网络中越区覆盖的分析[J].中国无线电,2005(12):17-18. 被引量:3
  • 5Leibiusky J,Eisbruch G,Simonassi D.Getting Started With Storm. Journal of Women s Health . 2012
  • 6Ashish Thusoo,Joydeep Sen Sarma,Namit Jain,Zheng Shao,Prasad Chakka,Suresh Anthony,Hao Liu,Pete Wyckoff,Raghotham Murthy.Hive: a warehousing solution over a map-reduce framework. Proceedings of the VLDB Endowment . 2009
  • 7Salakhutdinov R, Hinton G E. Deep boltzmann machines [C]l1 Proceedings of the 12th conference on Artificial Intelligence and Statistics, Clearwater, FL, USA, 2009: 448-455.
  • 8Zhang Y, Salakhutdinov R, Chang H A, et al.Resource configurable spoken query detection using deep Boltzmann machines [C ]11 Proceedings of 2012 conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 5161-5164.
  • 9Ryan D P, Daley B J, Wong K, et al.Prediction of ICU in-hospital mortality using a deep Boltzmann machine and dropout neural net [C] /1 Proceedings of 2013 conference on Biomedical Sciences and Engineering, Oak Ridge, TN, USA, 2013: 211-216.
  • 10Srivastava N, Salakhutdinov R R, Hinton G E.Modeling documents with deep boltzmann machines [C]// Proceedings of the 29th conference on Uncertainty in Artificial Intelligence, Bellevue, W A, USA, 2013: 222-227.

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部