期刊文献+

基于时空分布的混合高斯背景建模改进方法 被引量:11

Modified GMM algorithm based on spatiotemporal distribution
下载PDF
导出
摘要 针对传统的混合高斯模型对动态背景敏感、缓变目标检测不准确等问题,提出了一种基于时空分布的混合高斯建模改进方法。该方法的基本思想是混合高斯背景基于时间分布信息建模的同时,通过随机数生成方法对邻域进行采样,完成像素空间分布的背景建模;同时利用像素历史统计信息和决策融合机制的前景检测方法,实现对静止目标判定以及前景运动目标更精确的提取。最后,将此算法与其他前景检测方法进行对比实验,表明了该算法对动态背景鲁棒性强、缓变目标检测准确的结论。 Considering the traditional GMM is sensitive to dynamic environment,has low detection rate for the slow moving target,this paper proposed a modified GMM algorithm,which used spatial information to compensate time information. It used the random number generation method for sampling the neighborhood to complete background modeling based on pixel spatial distribution during the time distribution based on Gaussian mixture background modeling. Meanwhile,it utilized the foreground detection algorithm,which applied pixel's history statistic information and decision fusion mechanism,to get a more exact judgment on static and moving target. Finally,compared with other foreground detection algorithms,it shows that GMM has better robustness and more exact detection for the slow moving target.
出处 《计算机应用研究》 CSCD 北大核心 2015年第5期1546-1548,1553,共4页 Application Research of Computers
基金 广西自然科学基金资助项目(2013GXNSFBA019278) 广西高校科学预研基金资助项目(2013YB032)
关键词 背景建模 空间信息 混合高斯模型 动态背景 前景检测方法 background modeling spatial information GMM dynamic background foreground detection algorithm
  • 相关文献

参考文献11

  • 1STAUFFER C,GRIMSON W E L. Adaptive background mixture models for real-time tracking[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999:246-252.
  • 2KAEWTRAKULPONG P,BOWDEN R. An improved adaptive background mixture model for real-time tracking with shadow detection[C] //Proc of the 2nd European Workshop on Advanced Video Based Surveillance Systems. 2002:135-144.
  • 3ZIVKOVIC Z,Van der HEIJDEN F. Recursive unsupervised learning of finite mixture models[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(5):651-656.
  • 4ZIVKOVIC Z,Van der HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters,2006,27(7):773-780.
  • 5BOUTTEFROY P L M,BOUZERDOUM A,PHUNG S L,et al. On the analysis of background subtraction techniques using Gaussian mixture models[C] //Proc of IEEE International Conference on Acoustics Speech and Signal Processing. 2010:4042-4045.
  • 6LIN H H,CHUANG J H,LIU T L. Regularized background adaptation:a novel learning rate control scheme for Gaussian mixture modeling[J].IEEE Trans on Image Processing,2011,20(3):822-836.
  • 7王永忠,梁彦,潘泉,程咏梅,赵春晖.基于自适应混合高斯模型的时空背景建模[J].自动化学报,2009,35(4):371-378. 被引量:78
  • 8李勃,郁健,江登表,陈启美,张震纬.基于ST-CSLBP的混合时空背景建模算法[J].仪器仪表学报,2011,32(12):2781-2786. 被引量:7
  • 9BARNICH O,Van DROOGENBROECK M. ViBe:a universal background subtraction algorithm for video sequences[J].IEEE Trans on Image Processing,2011,20(6):1709-1724.
  • 10IEEE CVPR 2012 workshops on change detection[EB/OL].(2012). http://www. changedetection. net.

二级参考文献32

  • 1Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 2Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 3Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 4Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 5Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 6Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271
  • 7Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163
  • 8Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301
  • 9Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261
  • 10Wang Y, Loe K F, Wu J K. A dynamic conditional random field model for foreground and shadow segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 279-289

共引文献83

同被引文献120

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部