期刊文献+

New Exact Solutions of Fractional Zakharov–Kuznetsov and Modified Zakharov–Kuznetsov Equations Using Fractional Sub-Equation Method 被引量:3

New Exact Solutions of Fractional Zakharov–Kuznetsov and Modified Zakharov–Kuznetsov Equations Using Fractional Sub-Equation Method
原文传递
导出
摘要 In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely the space-time fractional Zakharov–Kuznetsov(ZK) and modified Zakharov–Kuznetsov(m ZK) equations by using fractional sub-equation method. As a result, new types of exact analytical solutions are obtained. The obtained results are shown graphically. Here the fractional derivative is described in the Jumarie's modified Riemann–Liouville sense.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第1期25-30,共6页 理论物理通讯(英文版)
基金 Supported by BRNS of Bhaba Atomic Research Centre,Mumbai under Department of Atomic Energy,Government of India vide under Grant No.2012/37P/54/BRNS/2382
  • 相关文献

参考文献23

  • 1A.M. Wa:z.wa:z., Comm. Non. Sci. and Num. Simul. 10 (2005) 597.
  • 2A.R. Seadawy, Compo and Math. Appl. 67 (2014) 172.
  • 3http://arxiv.org/abs/0905.4553v3.
  • 4X. Li, Int. J. of Diff. Equ. 2012 (2012) 1.
  • 5V.E. Zakharov and E.A. Kuznetsov, SOY. Phys. J. Energy Theor. Phys. 39 (1974) 285.
  • 6B. B.Kadomtsev and V.1. Petviashvilli, SOY. Phys. Dokl. 15 (1970) 539.
  • 7S. Guo and L. Mei, Phys. Lett. A. 375 (2011) 309.
  • 8G.G.C. Wu and E.W.M. Lee, Phys. Lett. A 374 (2010) 2506.
  • 9R.Y. Molliq, M.S.M. Noorani, I. Hashim, and R.R. Ah?mad, J. Comput. Appl. Math. 23 (2009) 103.
  • 10A. Yildirim and Y. GUlkanat, Commun. Theor. Phys. 53 (2010) 1005.

同被引文献5

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部