期刊文献+

城市路网交通流元胞自动机模型研究 被引量:13

Cellular Automata Model of Urban Road Network Traffic Flow
原文传递
导出
摘要 研究城市路网交通流的动态特性,揭示交通拥堵、环境污染和交通事故的产生原因和规律,能为城市交通问题的解决提供理论依据。元胞自动机模型是研究城市路网交通流动态特性的一个有效工具,能够再现许多重要的交通流特征。从路段模型、交叉口模型和路网模型3个方面总结和评述了国内外各种典型交通流元胞自动机模型。在现有模型的基础上,通过对车辆起讫点分布、路径选择行为、双向通行多车道路段车辆换道规则、不同控制交叉口的车辆更新规则以及网络拓扑结构等方面进行改进,可以提高元胞自动机模型在城市路网交通流仿真中的真实性。 Researching the dynamic characteristics of urban road network traffic flow and discovering the reasons and regularities of traffic congestions, environmental pollutions and traffic accidents can provide theory evidence for solving urban traffic problems. Cellular automata model is an effective tool to research dynamic characteristics of urban road network traffic flow. It can reproduce many important characteristics of traffic. We summarized and commented different kinds of typical cellular automata models of traffic flow including section models, intersection models and network models. On this basis, it is proposed that the authenticity of cellular automata model in the simulation of urban road network traffic flow can be enhanced by improving the distribution of vehicle's origin and destination, route choice behavior, vehicle lane-changing rules of 2-way multilane road section, vehicle update rules of intersections under different controls and topological structure of the network.
出处 《公路交通科技》 CAS CSCD 北大核心 2015年第4期143-149,共7页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金项目(51178110) 湖北省交通运输厅科技项目(2014-721-3-13) 金华市科学技术研究计划项目(2011-3-053)
关键词 交通工程 元胞自动机模型 综述 路网 交通流 traffic engineering cellular automata model review road network traffic flow
  • 相关文献

参考文献44

  • 1CREMER M, LUDWIG J. A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations [ J ]. Mathematics and Computers in Simulation, 1986, 28 (4) : 297 - 303.
  • 2WOLFRAM S. Statistical Mechanics of Cellular Automata [J]. Reviews of Modern Physics, 1983, 55 (3) : 601 -644.
  • 3NAGEL K, SCHRECKENBERG M. A Cellular Automaton Model for Freeway Traffic [ J ]. Journal de Physique I, 1992, 2 (12): 2221-2229.
  • 4BIHAM O, MIDDLETON A A, LEVINE D. Self- organization and a Dynamical Transition in Traffic-flow Models [ J ] Physical Review A, 1992, 46 (10) : 6124 -6127.
  • 5NAGEL K, PACZUSKI M. Emergent Traffic Jams [ J]. Physical Review E, 1995, 51 (4) : 2909 -2918.
  • 6TAKAYASU M, TAKAYASU H. 1/f Noise in a Traffic Model [J]. Fractals, 1993, 1 (4): 860-866.
  • 7BENJAMIN S C, JOHNSON N F, HUI P M. Cellular Automata Models of Traffic Flow along a Highway Containing a Junction [ J ] Journal of Physics A: Mathematical and General, 1996, 29 (12): 3119- 3127.
  • 8BARLOVIC R, SANTEN L, SCHADSCHNEIDER A, et al. Metastable States in Cellular Automata for Traffic Flow [ J]. The European Physical Journal B-condensed Matter and Complex Systems, 1998, 5 (3) : 793 -800.
  • 9FUKUI M, ISHIBASHI Y. Traffic Flow in 1D CellularAutomaton Model Including Cars Moving with High Speed [J]. Journal of the Physical Society of Japan, 1996, 65 (6) : 1868 - 1870.
  • 10LI Xiao-bai, WU Qing-song, JIANG Rui. Cellular Automaton Model Considering the Velocity Effect of a Car on the Successive Car [ J]. Physical Review E, 2001, 64 (6) : 066128.

二级参考文献26

  • 1Nagel K,Schreckenberg M. A cellular automaton model for freeway traffic [J]. Journal of Physique. 1 ( France), 1992,2:221-229.
  • 2Kerner B S. The physics of traffic : empirical freewa~ pattern features, engineering applications, and theory [ M]. German: Springer, 2004.
  • 3Helbing D. Trafie and related self-driven many particle systems[J]. Reviews of Modern Physics. 2001 , 73 : 1067-1141.
  • 4Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems[J]. Physics Reports, 2000, 329 (4-6) : 199-329.
  • 5Maerivoet S, Moor B D, Cellular automata models of road Traffic [J]. Physics Reports, 2005, 419 ( 1) : 1-64.
  • 6Biham O, Middleton A A, Levine D. Self-organization and a dynamical transition in traffic flow models [ J ] . Physical Review E, 1992 (10) : 6124-6127.
  • 7Fukui M, Oikawa H, Ishibashi Y. Flow of cars crossing with unequal velocities in a two-dimensional cellular automaton model [ J ]. Journal of the Physical Society of Japan, 1996, 65(8): 2514-2517.
  • 8Nagatani T. Anisotropic effect on jamming transition in traffic-flow[J ]. Journal of the Physical Society of Japan 1996, 62(8): 2656-2662.
  • 9Nagatani T. Jamming transition in the traffic-flow model with two-level crossings [J]. Physical Review E, 1993, 48(5): 3290-3294.
  • 10Tadaki S,Kikuchi M.Jam phases in a two-dimen-sional cellular-automaton model of traffic flow. Physical Review . 1994

共引文献3

同被引文献98

引证文献13

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部