摘要
利用矩阵广义Schur补的极大极小秩表达式研究了矩阵的最小二乘广义逆,给出关于最小二乘广义逆的子矩阵表达式的极秩公式,并且得出具有某些特殊结构的最小二乘广义逆存在的充要条件.
Least square generalized inverse was investigated by using the expressions of maximal and minimal ranks of generalized Schur complement .Some formulas for the extremal rank of expressions of submatrices of Least square generalized inverse are derived ,and necessary and sufficient conditions are given for the existence of Least square generalized inverse with special structure .
出处
《聊城大学学报(自然科学版)》
2015年第1期10-14,共5页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金资助项目(11301247
11171226)
关键词
M-P逆
最小二乘广义逆
广义SCHUR补
极大极小秩
M-P inverse
Least square generalized-inverse
generalized Schur complement
maxi-mal and minimal rank