期刊文献+

具有特殊结构的最小二乘广义逆

Least Square Generalized Inverse with Special Structure of Matrix
下载PDF
导出
摘要 利用矩阵广义Schur补的极大极小秩表达式研究了矩阵的最小二乘广义逆,给出关于最小二乘广义逆的子矩阵表达式的极秩公式,并且得出具有某些特殊结构的最小二乘广义逆存在的充要条件. Least square generalized inverse was investigated by using the expressions of maximal and minimal ranks of generalized Schur complement .Some formulas for the extremal rank of expressions of submatrices of Least square generalized inverse are derived ,and necessary and sufficient conditions are given for the existence of Least square generalized inverse with special structure .
出处 《聊城大学学报(自然科学版)》 2015年第1期10-14,共5页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金资助项目(11301247 11171226)
关键词 M-P逆 最小二乘广义逆 广义SCHUR补 极大极小秩 M-P inverse Least square generalized-inverse generalized Schur complement maxi-mal and minimal rank
  • 相关文献

参考文献5

二级参考文献68

  • 1QingWenWANG.A System of Four Matrix Equations over von Neumann Regular Rings and Its Applications[J].Acta Mathematica Sinica,English Series,2005,21(2):323-334. 被引量:9
  • 2SRAEL BEN A,GREVILLE T N E.Generalized inverses:theory and application[M].New York:Springer-Verlag,2003.
  • 3WGNG G, WEI Y, QIAO S. Generalized inverses: theory and computation[M].Beijing : Science Press, 2004.
  • 4GREVILLE T N E. Note on the generalized inverses of a matrix product[J].SIAM Review, 1966,8:518-521.
  • 5SUN W,WEI Y. Inverse order rule for weighted generalized inverse[J].SIAM J Matrix Anal Appl, 1998,19: 772-775.
  • 6HARTWIG R E. The reverse order law revisited[J].Lin Alg Appl, 1986,76:241-246.
  • 7SHINOZAKI N,SIBUYA M.The reverse order law (AB)=B A [J]. Lin Alg Appl,1974,9:29-40.
  • 8TIAN Y. Reverse order laws for generalized inverse of multiple matrix products[J].Linear Algebra Appl, 1994,211:85-100.
  • 9DEPIERRO A R,WEI M. Reverse order law for reflexive generalized inverses of products of matrices[J]. Linear Algebra Appl, 1996,277 : 299-311.
  • 10WEI M,WANG G.Reverse order laws for least squares g-inverses and minimum-norm g-inverses of products of two matrices[J]. Linear Algebra Appl, 2002,342: 117-132.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部