摘要
对于正整数n,设Fn=22^n+1是第n个Fermat数,又设S(Fn)是Fn的Smarandache函数.运用初等的方法证明了:当n≥4时S(Fn)≥4·2^n(4n+9)+1.
For any positive integern, Let Fn = 2^2n + 1 be then-th Fermat number, and let S(Fn) denote the Smarandache function of Fn. In this paper, using some elementary methods, we prove that if n≥ 4, then S(Fn) ≥ 4(4n +9)2^n + 1.
出处
《数学的实践与认识》
北大核心
2015年第8期283-286,共4页
Mathematics in Practice and Theory