期刊文献+

基于法拉第旋转检测的铷原子磁力仪研究 被引量:8

Research of Rubidium Atomic Magnetometer Based on Faraday Rotation Detection
原文传递
导出
摘要 基于线偏振光在充有被极化的铷原子的气室内传播时,在磁场的作用下会发生法拉第旋转这一现象,实现了一种基于法拉第旋转检测的铷原子矢量磁力仪。分析了它的工作原理,并测试了它对不同磁场的响应。测试结果表明,磁力仪灵敏度为1pT/Hz,测量范围为±60 n T,响应带宽为48 Hz。进一步研究了调制磁场和工作温度对铷原子磁力仪性能的影响,并提出了一些提高性能的方法。 The polarization plane of linearly polarized light will rotate when it passes through polarized rubidium vapor under the influence of magnetic field. A rubidium atomic vector magnetometer is realized based on this phenomenon. The operation principle is analyzed and the main performance is tested. Test results show that its sensitivity reaches 1 pT/√Hz with measurement range of +60 nT and bandwidth of 48 Hz. Some factors that influence the magnetometer performance such as magnetic field modulation and vapor cell temperature are discussed. Some methods to further improve the performance of the magnetometer are proposed.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第4期230-236,共7页 Chinese Journal of Lasers
基金 国防科学技术大学科研计划项目(JC140702) 国家自然科学基金(61475192)
关键词 原子与分子物理学 原子磁力仪 光极化 法拉第旋转 灵敏度 atomic and molecular physics atomic magnetometer light polarization Faraday rotation sensitivity
  • 相关文献

参考文献25

  • 1Johnson C, Schwindt P, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer [J]. Appl Phys Lett, 2010, 97(24): 243703.
  • 2Wyllie R. The Development of a Multichannel Atomic Magnetometer Array[D]. Madison: University of Wisconsin Madison, 2012. 1-5.
  • 3Mathe V, Leveque F, Mathe P E, et al.. Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case[J]. J App Geophys, 2006, 58(3): 202-217.
  • 4Meyer D, Larsen M. Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2): 75-82.
  • 5Harle P, Wackerle G, Mehring M. A nuclear-spin based rotation sensor using optical polarization and detection methods[J]. Appl Magn Reso, 1993, 5(2): 207-220.
  • 6John P, Wikswo J. Squid magnetometers for biomagnetism and nondestructive testing: important questions and initial answers[J]. IEEE T App Supercon, 1995, 5(2): 74-120.
  • 7Robbes D. Highly sensitive magnetometers--a review[J]. Sensor Actuat A--Phys, 2006, 129(1-2): 86-93.
  • 8Kominis I K, Kornack T W, Allred J C, et al.. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003,422(6932): 596-599.
  • 9Lee S K, Sauer K L, Seltzer S J, et al.. Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance[J]. Appl Plays Lett, 2006, 89(21): 214106.
  • 10Savukov I M, Seltzer S J, Romalis M V, et al.. Tunable atomic magnetometer for detection of radio-frequency Magnetic fields[J]. Phys Rev Lett, 2005, 95(6): 063004.

二级参考文献29

  • 1《物探化探计算技术》2005年1~4期总要目[J].物探化探计算技术,2005,27(4):361-365. 被引量:1
  • 2I M Savukov, M V Romalis. NMR detection with an atomic magnetometer[J]. Phys Rev Lett, 2005, 94(12): 123001.
  • 3Dmitry Budker, Michael Romalis. Optical magnetometry[J]. Nature Physics, 2007, 3(4) : 227 - 234.
  • 4H B Dang, A C Maloof, M V Romalis. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Appl Phys Lett, 2010, 97(15) : 151110.
  • 5M P Ledbetter, I M Savukov, V M Acosta, a al: Spin-exchange relaxation-free magnetometry with Cs vapor[J]. Phys Rev A, 2008, 77(3): 033408.
  • 6H Xia, A Ben-Amar Baranga, D Hoffman, et al: Magnetoencephalography with an atomic magnetometer[J]. Appl Phys Lett, 2006, 89(21): 211104.
  • 7W Chalupczak, R M Godun, S Pustelny. Room temperature femtotesla radio-frequency atomic magnetometer[J]. Appl Phys Lett, 2012, 100(24): 242401.
  • 8Pavel Ripka. Advances in fluxgate sensors[J] Sensors and Actuators A, 2003, 106(1) : 8 - 14.
  • 9Ya S Greenberg. Application of superconducting quantum interference devices to nuclear magnetic resonance[J]. Rev Mod Phys, 1998, 70(1): 175-222.
  • 10J Belfi, G Bevilacqua, V Biancalana, et al: Cesium coherent population trapping magnetometer for cardiosignal detection in unshielded environment[J]. J Opt Soc Am B, 2007, 24(9) : 2357 - 2362.

共引文献27

同被引文献52

  • 1张昌达.量子磁力仪研究和开发近况[J].物探与化探,2005,29(4):283-287. 被引量:34
  • 2Savukov I M, Sehzer S J, Romalis M V, et al.. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Phys Rev Lett, 2005, 95(6): 063004.
  • 3Smullin S J, Savukov I M, Vasilakis G, et al.. Low-noise high-density alkali-metal scalar magnetometer[J]. Phys Rev A, 2009, 80 (3): 033420.
  • 4Terao A, Ban K, Ichihara S, et al.. Highly responsive ac scalar atomic magnetometer with long relaxation time[J]. Phys Rev A, 2013 88(6): 063413.
  • 5Budker D, Kimball D J. Optical Magnetometry[M]. New York: Cambridge University Press, 2013.60-82, 319-335.
  • 6Babcock E D. Spin-exchange Optical Pumping with Alkali-Metal Vapors[D]. Madison: University of Wisconsin-Madison, 2005 49-67.
  • 7Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69(2): 629-642.
  • 8Happer W, Jau Y Y, Walker T. Optically Pumped Atoms[M]. Weinheim: Wiley-VCH Verlag GmbH & Co, 2010. 159-217.
  • 9Franzen W. Spin relaxation of optically aligned rubidium vapor[J]. Phys Rev, 1959, 115(4): 850-856.
  • 10科尼.原子光谱学和激光光谱学[M].邱元武,韩全生,张绮香,译.北京:科学出版社,1984:442-457.

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部