期刊文献+

基于扩展有限元的多裂纹扩展分析 被引量:6

Analyzing Multiple Crack Propagation Using Extended Finite Element Method(X-FEM)
下载PDF
导出
摘要 研究基于扩展有限元的多裂纹扩展分析方法以及ABAQUS环境下的程序实现。在位移函数中增加扩充项以描述裂纹周围的不连续位移场。初始裂纹以点集或方程的形式给出,并使用水平集函数将多裂纹信息离散到单元节点上,水平集函数还用来追踪裂纹扩展路径。使用局部水平集更新方法减小了计算规模,改进了裂尖单元的判断准则,借助商业软件Tecplot软件实现了裂纹扩展的动态显示功能。使用交互积分法计算混合模式下的应力强度因子,用最大周向拉应力准则判断裂纹扩展方向。探讨了网格密度和积分域尺寸对方法的影响,数值算例表明扩展有限元方法能够模拟任意形状的裂纹,并且能够反映多裂纹扩展的规律。 A numerical method and its implementation in ABAQUS using X-FEM to analyze multiple crack propagation was studied. The displacement discontinuity was approximated by appending enriched items to standard field. We give the initial cracks in the form of point-set or curve functions and dispersed them to the element nodes using Level Set Method(LSM). LSM was also used to track crack propagation paths. The local level set update technique was used to reduce the computing scale and the Judgmental Approach has been improved. The display of the process of crack propagation was realized using the commercial software Tecplot. Interaction integral technique was used to calculate mixed mode stress intensity factors. The maximal circumferential stress criterion was used to calculate the kinking angles of the propagating cracks. Influence of mesh and integral zone on simulation results were taken into consideration. Numerical examples were presented to demonstrate the benefits of the proposed implementation.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第2期197-203,共7页 Journal of Northwestern Polytechnical University
关键词 ABAQUS 裂尖 疲劳裂纹扩展 有限元 流程图 矩阵代数 刚度矩阵 应力强度因子 交互积分 水平集法 扩展有限元法 ABAQUS crack tips fatigue crack propagation finite element method flowcharting matrix algebra stiffness matrix stress intensity
  • 相关文献

参考文献13

  • 1Portela A, Aliabadi M H, Rooke D P. The Dual Boundary Element Method : Effective Implementation for Crack Problems [ J ]. International Journal for Numerical Methods in Engineering, 1992, 33 (6) : 1269-1287.
  • 2Belytschko T, Gu L, Lu Y Y. Fracture and Crack Growth by Element Free Galerkin Methods [ J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A) : 519-534.
  • 3Bouchard P O, Bay F, Chastel Y. Numerical Modelling of Crack Propagation : Automatic Remeshing and Comparison of Different Criteria[ J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(35) : 3887-3908.
  • 4Khoei A R, Azadi H, Moslemi H. Modeling of Crack Propagation via an Automatic Adaptive Mesh Refinement Based on Modi- fied Superconvergent Patch Recovery Technique [ J ]. Engineering Fracture Mechanics, 2008, 75 (10) : 2921-2945.
  • 5Belytschko T, Black T. Elastic Crack Growth in Finite Elements with Minimal Remeshing[ J]. International Journal for Numeri- cal Methods in Engineering, 1999, 45(5) : 601-620.
  • 6Dolbow J, Belytschko T. A Finite Element Method for Crack Growth without Remeshing[ J]. Int J Numer Meth Engng, 1999, 46:131-150.
  • 7Pais M J. Variable Amplitude Fatigue Analysis Using Surrogate Models and Exact XFEM Reanalysis[ D]. University of Florida, 2011.
  • 8方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 9谢海,冯淼林.扩展有限元的ABAQUS用户子程序实现[J].上海交通大学学报,2009,43(10):1644-1648. 被引量:5
  • 10Giner E, Sukumar N, Taranc6n J E, et al. An Abaqus Implementation of the Extended Finite Element Method[ J]. Engineering Fracture Mechanics, 2009, 76(3) : 347-368.

二级参考文献28

  • 1李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 2方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 3匡震邦 马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002..
  • 4Belytschko T, Lu Y Y, Gu L, Element-free Galerkin method [J]. Int J Numer Mech Engng, 1994,37(2) : 229-256.
  • 5Belytschko T, Black T, Elastic crack growth in finite element with minimal remeshing [J]. Int J Numer Meth Engng, 1999, 45 (5): 601-620.
  • 6Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. Int J Numer Meth Engng, 1999,46(1): 131-150.
  • 7Babuska I, Melenk J M. The partition of unity method [J]. Int J Numer Meth Engng, 1997,40(4) :727- 758.
  • 8Melenk J M, Babuska I. The partition of unity method: basic theory and applications [J]. Comp Meth Appl Meeh Enging, 1996,139(1-4) : 289-314.
  • 9Fleming M, Chu Y A, Moran B, et al. Enriched element-free Galerkin methods for crack tip fields [J]. Int J Numer Meth Engng, 1997,40(8) : 1483-1504.
  • 10Liu X Y, Xiao Q Z, Karihaloo B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials [J]. Int J Numer Meth Engng, 2004, 59 (8): 1103-1118.

共引文献66

同被引文献85

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部