期刊文献+

基于MAF的传感器故障检测与诊断 被引量:5

Sensor fault detection and diagnosis using MAF
下载PDF
导出
摘要 针对工业控制系统中变量之间既存在线性相关性,且在时间结构上呈现自相关的特点,提出了一种基于最小/最大自相关因子(min/max autocorrelation factors,MAF)分析的传感器故障检测与诊断方法。首先,利用正常工况下的历史数据进行自相关因子分析,获得强自相关因子和弱自相关因子;在此基础上构造故障检测统计量,由核密度估计方法获得故障检测控制限,根据贡献图进行传感器故障定位。将所提出的方法应用于连续反应釜仿真过程的传感器故障检测与诊断,与经典的多变量统计方法——主元分析方法相比,所提出的方法能避免虚警,更快地检测缓变故障,并能更好地诊断和解释复杂故障。 For industrial processes, there are not only correlations among variables, but also autocorrelation in temporal structure of these variables, therfore, a new sensor fault detection and diagnosis method based on min/max autocorrelation factors (MAF) was proposed in this work. Firstly, MAF analysis of historical normal data was made. Then, strong autocorrelation factors and weak autocorrelation factors were obtained. Based on these factors, the statistics for fault detection were constructed and corresponding contribution plots were derived. The proposed method was applied to the continuous stirred tank reactor (CSTR) and compared with the principal component analysis method. Simulation results demonstrated that the proposed method could detect sensor faults with slow variation more quickly with less false-alarm. The contribution plots based on MAF can explain complicated sensor fault more reasonably than principal component analysis (PCA), which is a classical multivariate statistical method for process monitoring.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第5期1831-1837,共7页 CIESC Journal
基金 航空科学基金项目(201210P8003) 四川省应用基础研究项目(2014JY0257) 四川省科技厅科技支撑计划项目(2014GZ0009) 四川省教育厅自然科学重点项目(14ZA0171) 四川省教育厅青年基金项目(11ZB087)~~
关键词 最小/最大子自相关因子 主元分析 过程系统 传感器故障诊断 算法 min/max autocorrelation factors principal component analysis process systems sensor fault diagnosis algorithm
  • 相关文献

参考文献24

  • 1Mehranbod N. A probabilistic approach for sensor fault detection and identification [D]. Philadelphia, USA: Drexel University, 2002.
  • 2Hu Y P, Chen H X, Xie J L, Yang X S, Zhou C. Chiller sensor fault detection using a self-adaptive principal component analysis method [J]. Energy and Buildings, 2012, 54:252-258.
  • 3付克昌,戴连奎,吴铁军.一种基于结构优化SRAMS的传感器故障诊断方法[J].化工学报,2007,58(8):2045-2050. 被引量:1
  • 4Youssef A B, Khil S K, I. Slama-Belkhodja. State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction [J]. IEEE transactions on Power Electronics, 2013, 28 (12): 5842-5853.
  • 5Jafar Z, Ehsan S. Robust sensor fault detection based on nonlinear unknown input observer [J]. Measurement, 2014, 48:355-367.
  • 6贾润达,毛志忠,王福利.基于KPLS模型的间歇过程产品质量控制[J].化工学报,2013,64(4):1332-1339. 被引量:29
  • 7Pei X D, Yamashita Y, Yoshida M, Matsumoto S. Discriminant analysis and control chart for the fault detection and identification [J]. Computer Aided Chemical Engineering, 2006, 21: 1281-1286.
  • 8胡云鹏,陈焕新,周诚,杨小双,徐荣吉.基于主元分析法的冷水机组传感器故障检测效率分析[J].化工学报,2012,63(S2):85-88. 被引量:16
  • 9Jinane H, Claude D, Demba D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: ( Ⅰ ) [J]. Signal Processing, 2014, 94 (1): 278-287.
  • 10Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis [J] . Journal of Process Control, 2012, 22 (3): 551-563.

二级参考文献56

  • 1王海清,蒋宁.主元空间中的故障重构方法研究[J].化工学报,2004,55(8):1291-1295. 被引量:5
  • 2王海清,蒋宁.主元空间中的故障分离与识别方法[J].化工学报,2005,56(4):659-663. 被引量:6
  • 3陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 4颜学峰.基于径基函数-加权偏最小二乘回归的干点软测量[J].自动化学报,2007,33(2):193-196. 被引量:10
  • 5Nasir Mehranbod,Masoud Soroush,Chanin Panjapornpon.A method of sensor fault detection and identification.Journal of Process Control,2005,15:321339
  • 6Chiang L H,Russell E L,Braatz R D.Fault Detection and Diagnosis in Industrial Systems.London:Springer,2001
  • 7Mohamed-Faouzi Harkat,Gilles Mourot,Jose Ragot.An improved PCA scheme for sensor FDI:application to an air quality monitoring network.Journal of Process Control,2006,16:625-634
  • 8Janos Gertler,Jin Cao.PCA-based fault diagnosis in the presence of control and dynamics.AIChE Journal,2004,50(2):388-402
  • 9Manish Misra,Henry Yue H,Joe Qin S,Cheng Ling.Multivariate process monitoring and fault diagnosis by multiscale PCA.Computers and Chemical Engineering,2002,26:1281-1293
  • 10Toto Nugroho Pranatyasto,Qin S J.Sensor validation and process fault diagnosis for FCC units under MPC feedback.Control Engineering Practice,2001,9(8):877-888

共引文献73

同被引文献56

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部