期刊文献+

基于透视不变二值特征描述子的图像匹配算法 被引量:8

Perspective invariant binary feature descriptor based image matching algorithm
下载PDF
导出
摘要 针对基于局部特征的图像匹配算法普遍存在对透视变换顽健性差的缺点,提出了一种新的二值特征描述子PIBC(perspective invariant binary code),提高了图像匹配算法的透视变换顽健性。首先,在提取金字塔图像FAST特征点的基础上,利用Harris角点响应值去除非极大值点和边缘响应点;其次,通过模拟相机不同视角成像之间的透视变换,对单个FAST特征点生成不同视角变换下图像的二值描述子,使描述子具备描述不同视角图像中同一特征点的能力。实验结果表明,算法在提高描述子透视不变性的同时时间复杂度与SURF算法近似。 Current local feature based image matching algorithms are usually less robust to image perspective transfor- mation. Aiming to solve this problem, a new perspective invariant binary code (PIBC) based image matching algorithm is proposed. Firstly, FAST comers are detected on the pyramid images, those comers with non-maximum Harris comer re- sponse value and the edge points are further eliminated. And then, by simulating the perspective transformations of im- ages taken from different viewpoints, a single FAST comer is described with binary descriptors trader different viewpoint transformations, which makes the descriptor could describe the identical feature point on different perspective transform images. Experimental results show its robustness to image perspective transformation, while its complexity is similar with SURF.
出处 《通信学报》 EI CSCD 北大核心 2015年第4期105-114,共10页 Journal on Communications
基金 国家自然科学基金资助项目(61373076 61202143) 厦门大学中央高校基金资助项目(2013121026 2011121052) 厦门大学985平台建设基金资助项目 福建省自然科学基金资助项目(2013J05100 2010J01345 2011J01367) 厦门市科技重点基金资助项目(3502Z20123017) 高等学校博士学科点专项科研基金资助项目(201101211120024) 深圳市战略性新兴产业发展专项基金资助项目(JCYJ20120614164600201) 湖南省自然科学基金资助项目(12JJ2040) 教育厅科研基金资助项目(09A046)~~
关键词 图像匹配 二值特征描述子 透视不变 PIBC image matching binary feature descriptor perspective invariant PIBC
  • 相关文献

参考文献23

  • 1蒋淑静,黑保琴,张九星,李倩男.基于PDE的自适应各向异性图像配准方法研究[J].通信学报,2013,34(5):192-199. 被引量:4
  • 2LOWED G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3LOWED G. Object recognition from local scale-invariant features[A]. Proceedings of IEEE International Conference on Computer Vision[C] Kerkyra, Greece, 1999.1150-1157.
  • 4杨化超,姚国标,王永波.基于SIFT的宽基线立体影像密集匹配[J].测绘学报,2011,40(5):537-543. 被引量:28
  • 5BAY H, TUYTELAARS T, VANGOOL L. SURF: speeded up robust features[A]. Proceedings of European Conference on Computer Vi- sion[C]. Graz, Austria, 2006.404-417.
  • 6BAY H E, ESS A, TUYTELAARS T, et al. SURF: speeded up robust features[J]. Computer Vision and Image Understanding, 2008,110(3), 346-359.
  • 7KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive represen- tation for local image descriptors[A]. Proceedings of the IEEE Con- ference on Computer Vision and Pattern Recognition[C]. 2004. 506-513.
  • 8STRECHA C, BRONSTEIN A M, BRONSTEIN M M, et al. LDAHash: improved matching with smaller descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 66-78.
  • 9ALCANTARILLA P F, NUEVO J, BARTOLI A. KAZE features[A]. Proceedings of European Conference on Computer Vision[C]. Springer Berlin Heidelberg, 2012. 214-227.
  • 10ALCANTARILLA P F, NUEVO J, BARTOLI A. Fast explicit diffu- sion for accelerated features in nonlinear scale spaces[A]. Proceedings of British Machine Vision Conference[C]. Bristol, UK, 2013.1 - 11.

二级参考文献23

  • 1梁栋,童强,屈磊,王年,韦穗.一种基于极几何和单应约束的图像匹配算法[J].系统仿真学报,2006,18(1):44-46. 被引量:21
  • 2华顺刚,曾令宜.一种基于角点检测的图像密集匹配算法[J].计算机工程与设计,2007,28(5):1092-1095. 被引量:11
  • 3ZHU Qing, WU Bo, ZHAO Jie. Propagation Strategies for Stereo Image Matching Based on the Dynamic Triangle Constraint [J]. ISPRS Journal of Photogrammetry Remote Sensing, 2007, 62(4):295-308.
  • 4TANG Liang, WU Chengke, CHEN Zezhi. Image Dense Matching Based on Region Growth with Adaptive Window[J].Pattern Recognition Letters, 2002, 23(10) : 1169-1178.
  • 5LHUILLIER M, QUAN L. A Quasi-dense Approach to Surface Reconstruction from Uncalibrated Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3):418 -433.
  • 6KANNALA J, BRANDT S. Quasi-dense Wide Baseline Matching Using Match Propagation[C]// Proceedings of IEEE Con{erence on Computer Vision and Pattern Recognition. Minneapolis : IEEE, 2007.
  • 7MIKOLAJCZYK K, TUYTELAARS T, SCHMID C. A Comparison of Affine Region Deteetors[J].International Journal of Computer Vision, 2005, 60(1) : 163- 186.
  • 8MEGYESI Z, KOS G, CHETVERIKOV D. Surface Normal Aided Dense Reconstruction from Images[C] // Proceedings of Computer Vision Winter Workshop. Telc: [s. n.] ,2006.
  • 9LOWE D. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10HARTLEY R I, ZISSERMAN A. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2003.

共引文献51

同被引文献88

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部