期刊文献+

基于人工蜂群算法的食品供应链召回优化 被引量:2

Optimization of Recall in Food Supply Chain Using Modified Artificial Bee Colony Algorithm
下载PDF
导出
摘要 针对食品供应链加工环节召回优化问题,给出4层批次分散模型,包含原料、部件、半成品、成品4个层次和分解、组合、包装3个加工流程。该批次分散模型的求解是一个NP难度问题。提出一种基于人工蜂群算法的召回优化方法,并引入惩罚函数,将约束问题转化成无约束问题。仿真结果和性能对比表明,该算法收敛较快,运算开销小,可以显著降低平均召回规模,适用于食品供应链加工环节的召回优化。 In recent years,the traceability in food supply chain has been recognized as an essential tool for guaranteeing food safety and food quality. In this paper,a 4-level batch dispersion model,referring to the food batch dispersion model,is given to minimize the quantity of recalls. This model consists of four levels,respectively raw materials,components,semi-finished products and finished products while the model involves three operations,i, e. , disassembling,assembling and packaging. Since the 4-level batch dispersion is a NP hard problem,an artificial bee colony (ABC) algorithm is adopted to minimize the quantity of recalls to optimize traceability in food supply chain. Compared with the traditional intelligent optimization method,the ABC algorithm is proposed to maintain a balance between the global search ability and the local search ability, and to overcome the main disadvantage of the poor global search ability and local optimums. The simulation results show that the performances of the ABC algorithm can minimize the potential recalls quantity efficiently,which is applicable to the optimization of recall in food supply chain.
出处 《江南大学学报(自然科学版)》 CAS 2015年第2期166-171,共6页 Joural of Jiangnan University (Natural Science Edition) 
基金 江苏省产学研前瞻性联合研究项目(BY2013015-04) 中央高校基本科研业务费专项资金项目(JUSRP31106)
关键词 追溯 召回 食品供应链 批次分散 人工蜂群算法 traceability, recall, food supply chain, batch dispersion, artificial bee colony algorithm
  • 相关文献

参考文献16

  • 1Pizzuti T, Mirabelli G, Sanz-Bobi M A, et al. Food track and trace ontology for helping the food traceability control [J]. Journal of Food Engineering,201g, 120 : 17-30.
  • 2Dabbene F, Gay P, Tortia C. Traceability issues in food supply chain management:a review[J]. Biosystems Engineering, 2014, 120 : 65-80.
  • 3Aung M M, Chang Y S. Traceability in a food supply chain:safety and quality perspectives [J]. Food Control,2014,39:172-184.
  • 4Alfaro J A, R6bade L A. Traceability as a strategic tool to improve inventory management: a case study in the food industry [J]. International Journal of Production Economics ,2009,118 ( 1 ) : 104-110.
  • 5Kramer M N,Coto D,Weidner J D. The science of recalls[J]. Meat Science,2005,71 (1) :158-163.
  • 6Van Dorp C A. A traceability application based on gozinto graphs [C]//Proceedings of EFITA 2003 Conference. Debrecen, Hungary: IOS Press ,2003.
  • 7Dupuy C, Botta-Genoulaz V, Guinet A. Batch dispersion model to optimise traceability in food industry [J]. Journal of Food Engineering, 2005,70 ( 3 ) : 333-339.
  • 8Dabbene F, Gay P. Food traceability systems : performance evaluation and optimization [J]. Computers and Electronics in Agriculture ,2011,75 ( 1 ) : 139-146.
  • 9Kallel L, Benaissa M. A production model to reduce batch dispersion and optimize traceability [C]//Logistics (LOGISTIQUA), 2011 4th International Conference on. Hammamet: IEEE ,2011 : 144-149.
  • 10Tamayo S, Monteiro T, Saner N. Deliveries optimization by exploiting production traceability information [J]. Enginering Applications of Artificial Intelligence,2009,22 (4) :557-568.

二级参考文献71

共引文献36

同被引文献39

  • 1吴兵,罗荣桂,彭伟华.基于遗传算法的物流配送中心选址研究[J].武汉理工大学学报(信息与管理工程版),2006,28(2):89-91. 被引量:36
  • 2秦固.基于蚁群优化的多物流配送中心选址算法[J].系统工程理论与实践,2006,26(4):120-124. 被引量:86
  • 3李军军,王锡淮,黄有方,肖健梅.基于混合微粒群优化算法的配送中心选址问题求解[J].物流科技,2006,29(8):26-30. 被引量:5
  • 4KARABOGA D.An idea based on honey bee swarm for numerical optimization[R].Kayseri:Eroiyes University,Engineering Faculty,Computer Engineering Department,2005.
  • 5SINGH A.An Aartificial Bee Colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem[J].Applied Soft Computing,2009,9(2):625-631.
  • 6PAN Q K,TASGETIREN M F,SUGANTHAN P N,et al.A discrete artificial bee colony algorithm for the lotstreaming flow shop scheduling problem[J].Information Sciences,2010,181(12):2455-2468.
  • 7XU Chunfan,DUAN Laibin.Artificial Bee Colony Optimized Edge Potential function approach to Target Recognition for Low-Altitude aircraft[J].Pattern Recognition Letters,2010,31(13):1759-1772.
  • 8OZTURK C,KARABOGA D,GORKEMLI B.Probabilisticdynamic deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm[J].Sensors,2011,11(6):6056-6065.
  • 9AKAY B,KARABOGA D.A modified artificial for RealParameter Optimization[J].Information Science,2012,192(6):120-142.
  • 10LI X,YIN M.A discrete artificial bee colony algorithm with composite mutationstrategies for permutation flow shop scheduling problem[J].Scientia Iranica.doi:10.1016/j.scient.2012.10.034.1921-1935.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部