期刊文献+

基于人工鱼群神经网络的城市时用水量预测方法 被引量:18

Forecast Method of City Water Consumption Per Hour Based on Artificial Fish-Swarm Neural Network
下载PDF
导出
摘要 城市供水时用水量预测精度对城市供水系统具有重要影响.传统的反向传播(back-propaganda,BP)神经网络预测方法容易陷入局部解,并且需要大量的训练数据.人工鱼群算法具有较优的全局收敛能力及较快的寻优速度.为此,利用人工鱼群算法对BP神经网络的初始权值和阈值进行优化,建立了一种新的时用水量预测模型.将该模型应用到华北某市时用水量的预测中,预测结果表明人工鱼群神经网络算法的均方差比BP神经网络算法的均方差小5%.实例证明,人工鱼群神经网络比BP神经网络的预测精度更高,收敛速度更快.人工鱼群神经网络算法可用于短期水量预测. The forecast precision of city water consumption per hour has great effect on the city water supply system. The traditional forecast method of back-propagation(BP)neural network tends to offer local values and requires a lot of data training. The artificial fish-swarm algorithm(AFSA)has better global convergence ability and higher optimiza-tion speed. AFSA was adopted to optimize the initial setting weights and thresholds of BP neural network. Then anew forecast model of water consumption per hour was built and was applied to forecast the water consumption per hour of a city in North China. Results show that the mean square error of the artificial fish-swarm neural network algorithm is lower than that of BP neural network algorithm by 5%. It has been verified by instances that the artificial fish-swarm neural network has better forecast precision and higher convergence speed than BP neural network. Artificial fish-swarm neural network algorithm can be used to forecast the short-term water consumption.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2015年第4期373-378,共6页 Journal of Tianjin University:Science and Technology
基金 国家社会科学基金重点资助项目(13AZD011)
关键词 城市用水 人工鱼群算法 水量预测 city water consumption artificial fish-swarm algorithm water consumption forecast
  • 相关文献

参考文献18

二级参考文献56

共引文献314

同被引文献158

引证文献18

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部