期刊文献+

基于随机积分的非线性滤波跟踪算法

Target Tracking Algorithm Based on Nonlinear Stochastic Integral Filter
下载PDF
导出
摘要 针对雷达系统的非线性目标跟踪存在精度低、滤波易发散等问题,提出一种新的非线性滤波算法——随机球面径向积分滤波算法(SSIF)。该滤波算法基于随机积分准则,利用随机球面积分准则和随机径向积分准则来近似函数积分。所提的滤波算法和传统的非线性滤波算法,例如扩展卡尔曼滤波、不敏卡尔曼滤波和容积卡尔曼滤波等相比在计算复杂度相当的情况下,不仅可以消除系统误差具有更高的跟踪精度,而且可以防止滤波发散提高滤波稳定度。通过蒙特卡洛仿真实验表明,所提出的非线性滤波算法整体性能明显优于传统的滤波算法。 To solve the problem of low filter accuracy and easy getting divergence during target tracking in nonlinear system,a new nonlinear filter algorithm—stochastic spherical radial integration filter(SSIF)is proposed.The method uses stochastic radial rules and stochastic spherical integration rules to approximate the integral.Comparing with the traditional nonlinear filter,such as EKF,UKF and CKF,the new nonlinear filter can not only eliminate the systematic error with higher tracking accuracy,but also improve the stability of the filter,with the similar computational complexity.The Mont Carlo simulation shows that the method outperforms the traditional algorithms.
出处 《雷达科学与技术》 北大核心 2015年第2期139-144,共6页 Radar Science and Technology
基金 国家自然科学基金(No.61301266 61178068 61201276) 中国中央大学基本研究基金(No.ZYGX2012Z001) 新世纪优秀人才支持计划(No.A1098524023901001063)
关键词 非线性滤波 状态估计 数值积分 目标跟踪 nonlinear filter state estimation numerical integration target tracking
  • 相关文献

参考文献13

  • 1STRAKA O, DUNIK J, SIMANDL M. Randomized Unscented Kalman Filter in Target Tracking[C] // Proceedings of the 15th International Conference on Infor mation Fusion, Singapore: [s. n. ], 2012 : 503-510.
  • 2GARCiA-FERN,kNDEZ A F, MOREI.ANDE M R, GRAJAL J. Nonlinear Filtering Update Phase via the Single Point Truncated Unscented Kalman Fiher[C]// 2011 Proceedings of the 14th International Conference on Information Fusion, Chicago, IL: IEEE, 2011 : 1-8.
  • 3金亮亮,刘亚云.一种改进自适应机动目标跟踪算法[J].雷达科学与技术,2014,12(1):97-100. 被引量:7
  • 4NORGAARD M, POULSEN N K, RAVN O. New Developments in State Estimation for Nonlinear Sys- tems[J]. Automatica, 2000, 36(11):1627-1638.
  • 5GUSTAFSSON F, HENDEBY G. Some Relations Be- tween Extended and Unscented Kalman Filters[J].IEEE Trans on Signal Processing, 2012, 60(2):545-555.
  • 6JULIER S J, UHLMANN J K. Unscented Filtering and Nonlinear Estimation [J]. Proceedings of the IEEE, 2004, 92(3):401-422.
  • 7刘妹琴,汤晓芳,郑世友,张森林.基于RUKF-IMM的非线性系统滤波[J].华中科技大学学报(自然科学版),2013,41(5):57-63. 被引量:7
  • 8ARASARATNAM I, HAYKIN S. Cubature Kalman Fihers[J]. lEEETranson Automatic Control, 2009, 54(6) : 1254-1269.
  • 9DAHMANNI Mohammed, MECHE Abdelkrim, KECHE Mokhtar. Reduced Cubature Kalman Filte- ring Applied to Target Traeking[C]//2t Interna- tional Conference on Control, Instrumentation and Automation, [S. 1.]:[s- n. ]1, 2011:1097-1101.
  • 10霍光,李冬海,李晶.机动目标单站无源定位中的测量更新CKF-IMM算法[J].电子信息对抗技术,2013,28(5):33-38. 被引量:2

二级参考文献31

  • 1郭福成,孙仲康.三维机动辐射源的单站无源跟踪方法[J].现代雷达,2005,27(3):5-8. 被引量:11
  • 2范小军,刘锋,秦勇,张军.基于STF的“当前”统计模型及自适应跟踪算法[J].电子学报,2006,34(6):981-984. 被引量:46
  • 3Sun Shuli. Optimal linear estimation for systems with multiple packet dropouts[J]. Automatica, 2008, 44 (5) : 1333-1342.
  • 4Bruno S. Kalman filtering with intermittent observa- tions[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464.
  • 5Huang M, Dey S. Stability of Kalman filtering with Markovian packet losses[J]. Automatica, 2007, 43 (4) : 598-607.
  • 6Liu X H, Andrea G. Kalman filtering with partial ob- servation losses[C]//43rd IEEE Conference on Deci sion and Control. Piscatway: Institute of Electrical and Electronics Engineers Inc, 2004: 4180-4186.
  • 7Mo Y, Sinopoli B. A characterization of the critical value for Kalman filtering with intermittent observa- tions[C]//47th IEEE Conference on Decision and Control. Piscatway: Institute of Electrical and Elec- tronics Engineers Inc, 2009: 2692-2697.
  • 8Dunik J, Straka O, Simandl M. The development of a randomized unscented Kalman filter[C]//Proceedings of the 18th IFAC World Congress. New York: Cur- ran Associates Inc, 2011:8-13.
  • 9Nakamon S, Caballero-Aguila R, Hermoso-Carazo A. Signal estimation with nonlinear uncertain obser- vations using covariance informatio [J]. Journal of Statiscita Computation and Simulation, 2009, 79(1):55-56.
  • 10NaNacara W, Yaz E E. Recursive estimator for linear and nonlinear systems with uncertain observations [J]. Signal Processing, 1997, 62(2): 215-218.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部