期刊文献+

微博检索的研究进展 被引量:2

A Survey of Microblog Search
下载PDF
导出
摘要 随着微博的快速发展,微博检索已经成为近年来研究领域的热点之一。该文首先以TREC Microblog数据为基础,从分析微博文档和微博查询两方面出发,得出微博检索与传统文本检索之间的两点不同:一是微博文档相较于网页具有很多独有的特征;二是微博查询属于时间敏感查询,即在排序时除了考虑文本的语义相似度,还需要考虑时间因素,将这类方法统称为时间感知的检索技术。这两点差异使得已有的信息检索技术不能满足微博搜索的需求。该文主要介绍了近年来这两方面的相关研究:首先描述了微博本身的多种特征以及基于这些特征提出的检索方法;然后以传统信息检索过程为主线,分别介绍了将时间信息用于文本表示、文档先验、查询扩展三方面的排序模型,最后总结了已有工作并且对未来研究内容进行了展望。 With the rapid recent years. Firstly, in dataset. We found that, development of microblog, microblog retrieval has this paper, we analyze microblog documents and become one of the hot research areas in queries based on the TREC Microblog in contrast to traditional text retrieval, microblog search significantly differs in two ways One is that microblog has its own characteristics compared to webpage. And the other is that microblog queries are time-sensitive, which means time information should be used in addition to traditional text similarity. According to these two differences, traditional text retrieval methods cannot he directly used in microhlog search. Then, the related work on the two aspects of microblog retrieval is summarized. We described some microblog features and re- trieval methods based on these features. According to the process of information retrieval, search models which use temporal information as the document priori or for query expansion or for text representation are also introduced. At last, we provide the conclusion and discuss the future work.
出处 《中文信息学报》 CSCD 北大核心 2015年第2期10-23,共14页 Journal of Chinese Information Processing
基金 科技支撑计划(2012BAH46B02)
关键词 微博检索 时间信息 微博特性 文本表示 文档先验 查询扩展 microblog search temporal information microblog feature text representation document priori query expansion
  • 相关文献

参考文献48

  • 1中国互联网络信息中心.第31次中国互联网络发展状况统计报告[R].北京,2013.
  • 2Efron M. Information search and retrieval in microb-logs[J]. Journal of the American Society for Informa-tion Science and Technology, 2011. 62(6) :996-1008.
  • 3Tee van J.,Ramage D.,Morris M. R.并 Twit-terSearch: a comparison of microblog search and websearch[C]//Proceedings of the fourth ACM interna-tional conference on Web search and data mining. HongKong, China. 2011 : 35-44.
  • 4Girolami M.,Kab n, A. On an equivalence betweenPLSI and LDA[C]//Proceedings of the 26th annual in-ternational ACM SIGIR conference on Research anddevelopment in informaion retrieval. Toronto, Canada.2003: 433-434.
  • 5陈渊,林磊,孙承杰,刘秉权.一种面向微博用户的标签推荐方法[J].智能计算机与应用,2011,1(3):21-26. 被引量:14
  • 6Spiliopoulou M. Evolution in Social Networks: A Sur-vey. Social Network Data Analytics[C]//Social Net-work Data Analytics. Springer US. 2011 : 149-175.
  • 7Sakaki T.,Okazaki M.,Matsuo Y. Earthquakeshakes Twitter users: real-time event detection by so-cial sensors[C]//Proceedings of the 19th internationalconference on World wide web. Raleigh. North Caro-lina, USA. 2010: 851-860.
  • 8Petrovic S.,Osborne M.,Lavrenko V.,Streamingfirst story detection with application to Twitter[C]//Human Language Technologies: The 2010 AnnualConference of the North American Chapter of the As-sociation for Computational Linguistics. PA USA.2010: 181-189.
  • 9Mathioudakis M.,Koudas N. TwitterMonitor : trenddetection over the twitter stream [C3//Proceedings ofthe2010 International Conference on Management ofData. New York. 2010 : 1155-1158.
  • 10Cataldi M.,Caro L. D.,Schifanella C. Emergingtopic detection on Twitter based on temporal and so-cial terms evaluation [ C] //Proceedings of the TenthInternational Workshop on Multimedia Data Mining.Washington, D. C. 2010: 1-10.

二级参考文献38

  • 1维基百科[OL].[2011-11-18].http://zh.wikipedia.org/wiki/%E5%BE%AE%E5%8D%9A.
  • 2王斌.信息检索导论[M].北京:人民邮电出版社,2010:2-13.
  • 3Sharifi B P. Automatic Microblog Classification and Summarization[D]. 2010.
  • 4Sriram B, Fuhry D, Demir E, et al. Short Text Clas- sification in Twitter to Improve Information Filtering [C]//Proceeding of the 33rd international ACM SIGIR conference on research and development in information retrieval, 2010.
  • 5Nagmoti R, Teredesai A, Martine De Cock. Ranking Approaches for Microblog Search[C]//2010 IEEE/ WIC/ACM International Conference on Web Intelli- gence and Intelligent Agent Technology, 2010, (1) : 153-157.
  • 6Christopher D M, Raghavan P, Hinrich Schutze,.王斌(译).信息检索导论[M].北京,人民邮电出版社,2010.
  • 7Cheng X Z. Statistical Language Models for In{orma- tion Retrieval[M]. Foundations and Trends in Informa- tion Retrieval, 2008.
  • 8Jay M P, Croft W B. A language modeling approach to information retrieval[C]// Proceedings of the 21st an- nual international ACM SIGIR conference on research and development in information retrieval, New York, USA. 1998.
  • 9Ramage D, Dumais S, Liebling D. Characterizing mi- croblogs with topic models[C]//ICWSM, 2010.
  • 10Massoudi K, Tsagkias M, Rijke M D, et al. Incorpo- rating Query Expansion and Quality Indicators in Searching Microblog Posts[C]//ECIR, 2011,4 : 19-21.

共引文献73

同被引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部