摘要
Plant cell culture in bioreactors is an enabling tool for large scale production of clonal elite plants in agriculture, horticulture, forestry, pharmaceutical sectors, and for biofuel production. Advantages of bioreactors for plant cell culture have resulted in various types of bioreactors differing in design, operating technologies, instrumentations, and construction of culture vessels. In this review, different types of bioreactors for clonal propagation of plants and secondary metabolites production are discussed. Mechanical and biochemical parameters associated with bioreactor design, such as aeration, flow rate, mixing, dissolved oxygen, composition of built-up gas in the headspace, and pH of the medium, are pivotal for cell morphology, growth, and development of cells within tissues, embryos, and organs. The differences in such parameters for different bioreactor designs are described here, and correlated to the plant materials that have been successfully cultured in different types of bioreactors.
Plant cell culture in bioreactors is an enabling tool for large scale production of clonal elite plants in agriculture, horticulture, forestry, pharmaceutical sectors, and for biofuel production. Advantages of bioreactors for plant cell culture have resulted in various types of bioreactors differing in design, operating technologies, instrumentations, and construction of culture vessels. In this review, different types of bioreactors for clonal propagation of plants and secondary metabolites production are discussed. Mechanical and biochemical parameters associated with bioreactor design, such as aeration, flow rate, mixing, dissolved oxygen, composition of built-up gas in the headspace, and pH of the medium, are pivotal for cell morphology, growth, and development of cells within tissues, embryos, and organs. The differences in such parameters for different bioreactor designs are described here, and correlated to the plant materials that have been successfully cultured in different types of bioreactors.