期刊文献+

基于二维经验模态分解与小波变换的农作物图像去噪 被引量:2

下载PDF
导出
摘要 将小波自适应阈值去噪引入二维经验模态分解(bidimensional empirical mode decomposition,BEMD)中,提出一种自适应图像去噪算法,该算法首先对农作物噪声图像进行二维经验模态分解,获得具有不同尺度特征的固有模态函数(intrinsic mode function,IMF)子图像序列;然后将该序列中前3个子图像分别进行3层小波变换,引入一种新型自适应小波阈值去噪函数模型分别进行噪声抑制,实现小波系数重构;最后,对去噪后的固有模态函数子图像与剩余固有模态函数进行重构,获得去噪后的农作物图像。对实地拍摄的农作物图像进行去噪试验,结果表明,自适应图像去噪算法与均值滤波算法、小波阈值去噪算法相比,性能有较大幅度的提升。
出处 《江苏农业科学》 北大核心 2015年第4期400-402,共3页 Jiangsu Agricultural Sciences
基金 河北省自然科学基金(编号:F2012201023)
  • 相关文献

参考文献10

二级参考文献73

共引文献92

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部